DEVELOPMENT...

A PHP Error was encountered

Severity: Warning

Message: fopen(/data/log/sql.log): failed to open stream: Permission denied

Filename: models/Log.php

Line Number: 37

Backtrace:

File: /var/www/openml/openml_OS/models/Log.php
Line: 37
Function: fopen

File: /var/www/openml/openml_OS/core/MY_Database_Read_Model.php
Line: 30
Function: sql

File: /var/www/openml/openml_OS/views/pages/frontend/t/pre.php
Line: 104
Function: query

File: /var/www/openml/openml_OS/helpers/cms_helper.php
Line: 19
Function: view

File: /var/www/openml/openml_OS/controllers/Frontend.php
Line: 85
Function: loadpage

File: /var/www/openml/index.php
Line: 337
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: fopen(/data/log/sql.log): failed to open stream: Permission denied

Filename: models/Log.php

Line Number: 37

Backtrace:

File: /var/www/openml/openml_OS/models/Log.php
Line: 37
Function: fopen

File: /var/www/openml/openml_OS/core/MY_Database_Read_Model.php
Line: 30
Function: sql

File: /var/www/openml/openml_OS/views/pages/frontend/t/pre.php
Line: 124
Function: query

File: /var/www/openml/openml_OS/helpers/cms_helper.php
Line: 19
Function: view

File: /var/www/openml/openml_OS/controllers/Frontend.php
Line: 85
Function: loadpage

File: /var/www/openml/index.php
Line: 337
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: fopen(/data/log/sql.log): failed to open stream: Permission denied

Filename: models/Log.php

Line Number: 37

Backtrace:

File: /var/www/openml/openml_OS/models/Log.php
Line: 37
Function: fopen

File: /var/www/openml/openml_OS/core/MY_Database_Read_Model.php
Line: 30
Function: sql

File: /var/www/openml/openml_OS/views/pages/frontend/t/pre.php
Line: 117
Function: query

File: /var/www/openml/openml_OS/helpers/cms_helper.php
Line: 19
Function: view

File: /var/www/openml/openml_OS/controllers/Frontend.php
Line: 85
Function: loadpage

File: /var/www/openml/index.php
Line: 337
Function: require_once

OpenML
Task
Supervised Classification on fri_c2_1000_5

Supervised Classification on fri_c2_1000_5

Task 3775 Supervised Classification fri_c2_1000_5 422 runs submitted
0 likes downloaded by 0 people , 0 total downloads 0 issues
Visibility: Public
  • mythbusting_1 study_1 study_107 study_15 study_20 study_41 study_7 under100k under1m
Issue #Downvotes for this reason By


Metric:

422 Runs

Fetching data
Fetching data
Search runs in more detail run
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9477, f_measure: 0.8958, kappa: 0.7854, kb_relative_information_score: 730.865, mean_absolute_error: 0.1333, mean_prior_absolute_error: 0.4859, number_of_instances: 1000, precision: 0.8958, predictive_accuracy: 0.896, prior_entropy: 0.9796, recall: 0.896, relative_absolute_error: 0.2743, root_mean_prior_squared_error: 0.4929, root_mean_squared_error: 0.2795, root_relative_squared_error: 0.567, scimark_benchmark: 1324.8395, usercpu_time_millis: 80, usercpu_time_millis_testing: 80,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.55, f_measure: 0.5531, kappa: 0.1097, kb_relative_information_score: 178.9825, mean_absolute_error: 0.394, mean_prior_absolute_error: 0.4859, number_of_instances: 1000, precision: 0.5949, predictive_accuracy: 0.606, prior_entropy: 0.9796, recall: 0.606, relative_absolute_error: 0.8108, root_mean_prior_squared_error: 0.4929, root_mean_squared_error: 0.6277, root_relative_squared_error: 1.2735, scimark_benchmark: 1333.5799, usercpu_time_millis: 1900, usercpu_time_millis_testing: 120, usercpu_time_millis_training: 1780,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.7843, f_measure: 0.7885, kappa: 0.5658, kb_relative_information_score: 558.1956, mean_absolute_error: 0.212, mean_prior_absolute_error: 0.4859, number_of_instances: 1000, precision: 0.7892, predictive_accuracy: 0.788, prior_entropy: 0.9796, recall: 0.788, relative_absolute_error: 0.4363, root_mean_prior_squared_error: 0.4929, root_mean_squared_error: 0.4604, root_relative_squared_error: 0.9341, scimark_benchmark: 1287.514, usercpu_time_millis: 20, usercpu_time_millis_training: 20,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.7481, f_measure: 0.7882, kappa: 0.5629, kb_relative_information_score: 201.35, mean_absolute_error: 0.4066, mean_prior_absolute_error: 0.4859, number_of_instances: 1000, precision: 0.788, predictive_accuracy: 0.789, prior_entropy: 0.9796, recall: 0.789, relative_absolute_error: 0.8368, root_mean_prior_squared_error: 0.4929, root_mean_squared_error: 0.443, root_relative_squared_error: 0.8988, scimark_benchmark: 1386.5717, usercpu_time_millis: 120, usercpu_time_millis_testing: 10, usercpu_time_millis_training: 110,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.7257, f_measure: 0.7346, kappa: 0.4529, kb_relative_information_score: 447.7654, mean_absolute_error: 0.265, mean_prior_absolute_error: 0.4859, number_of_instances: 1000, precision: 0.7342, predictive_accuracy: 0.735, prior_entropy: 0.9796, recall: 0.735, relative_absolute_error: 0.5454, root_mean_prior_squared_error: 0.4929, root_mean_squared_error: 0.5148, root_relative_squared_error: 1.0444, scimark_benchmark: 1331.6907, usercpu_time_millis: 30, usercpu_time_millis_training: 30,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.8394, f_measure: 0.7517, kappa: 0.4905, kb_relative_information_score: 338.5582, mean_absolute_error: 0.3341, mean_prior_absolute_error: 0.4859, number_of_instances: 1000, precision: 0.7527, predictive_accuracy: 0.751, prior_entropy: 0.9796, recall: 0.751, relative_absolute_error: 0.6876, root_mean_prior_squared_error: 0.4929, root_mean_squared_error: 0.4013, root_relative_squared_error: 0.8142, scimark_benchmark: 883.2709, usercpu_time_millis: 13860, usercpu_time_millis_testing: 160, usercpu_time_millis_training: 13700,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9517, f_measure: 0.9087, kappa: 0.8116, kb_relative_information_score: 747.711, mean_absolute_error: 0.1294, mean_prior_absolute_error: 0.4859, number_of_instances: 1000, precision: 0.909, predictive_accuracy: 0.909, prior_entropy: 0.9796, recall: 0.909, relative_absolute_error: 0.2664, root_mean_prior_squared_error: 0.4929, root_mean_squared_error: 0.2761, root_relative_squared_error: 0.5601, scimark_benchmark: 1350.9691, usercpu_time_millis: 140, usercpu_time_millis_training: 140,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9793, f_measure: 0.9338, kappa: 0.8635, kb_relative_information_score: 780.1629, mean_absolute_error: 0.1153, mean_prior_absolute_error: 0.4859, number_of_instances: 1000, precision: 0.934, predictive_accuracy: 0.934, prior_entropy: 0.9796, recall: 0.934, relative_absolute_error: 0.2373, root_mean_prior_squared_error: 0.4929, root_mean_squared_error: 0.229, root_relative_squared_error: 0.4646, scimark_benchmark: 1315.0767, usercpu_time_millis: 270, usercpu_time_millis_testing: 20, usercpu_time_millis_training: 250,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.8825, f_measure: 0.8851, kappa: 0.7637, kb_relative_information_score: 760.3037, mean_absolute_error: 0.115, mean_prior_absolute_error: 0.4859, number_of_instances: 1000, precision: 0.8852, predictive_accuracy: 0.885, prior_entropy: 0.9796, recall: 0.885, relative_absolute_error: 0.2367, root_mean_prior_squared_error: 0.4929, root_mean_squared_error: 0.3391, root_relative_squared_error: 0.688, scimark_benchmark: 825.5282,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9166, f_measure: 0.8917, kappa: 0.7766, kb_relative_information_score: 700.304, mean_absolute_error: 0.155, mean_prior_absolute_error: 0.4859, number_of_instances: 1000, precision: 0.8918, predictive_accuracy: 0.892, prior_entropy: 0.9796, recall: 0.892, relative_absolute_error: 0.319, root_mean_prior_squared_error: 0.4929, root_mean_squared_error: 0.308, root_relative_squared_error: 0.6248, scimark_benchmark: 1372.2145,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9177, f_measure: 0.9059, kappa: 0.806, kb_relative_information_score: 761.3979, mean_absolute_error: 0.1218, mean_prior_absolute_error: 0.4859, number_of_instances: 1000, precision: 0.9058, predictive_accuracy: 0.906, prior_entropy: 0.9796, recall: 0.906, relative_absolute_error: 0.2507, root_mean_prior_squared_error: 0.4929, root_mean_squared_error: 0.291, root_relative_squared_error: 0.5904, scimark_benchmark: 1354.2491, usercpu_time_millis: 70, usercpu_time_millis_training: 70,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.8655, f_measure: 0.8749, kappa: 0.7412, kb_relative_information_score: 741.5514, mean_absolute_error: 0.124, mean_prior_absolute_error: 0.4859, number_of_instances: 1000, precision: 0.8768, predictive_accuracy: 0.876, prior_entropy: 0.9796, recall: 0.876, relative_absolute_error: 0.2552, root_mean_prior_squared_error: 0.4929, root_mean_squared_error: 0.3521, root_relative_squared_error: 0.7144, scimark_benchmark: 1372.2145, usercpu_time_millis: 20, usercpu_time_millis_testing: 10, usercpu_time_millis_training: 10,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.5504, f_measure: 0.4369, kappa: 0.088, kb_relative_information_score: -56.463, mean_absolute_error: 0.507, mean_prior_absolute_error: 0.4859, number_of_instances: 1000, precision: 0.6119, predictive_accuracy: 0.493, prior_entropy: 0.9796, recall: 0.493, relative_absolute_error: 1.0434, root_mean_prior_squared_error: 0.4929, root_mean_squared_error: 0.712, root_relative_squared_error: 1.4446, scimark_benchmark: 1290.1085, usercpu_time_millis: 30, usercpu_time_millis_training: 30,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9262, f_measure: 0.8774, kappa: 0.7468, kb_relative_information_score: 708.0243, mean_absolute_error: 0.1458, mean_prior_absolute_error: 0.4859, number_of_instances: 1000, precision: 0.8779, predictive_accuracy: 0.878, prior_entropy: 0.9796, recall: 0.878, relative_absolute_error: 0.3001, root_mean_prior_squared_error: 0.4929, root_mean_squared_error: 0.3054, root_relative_squared_error: 0.6196, scimark_benchmark: 1358.4523, usercpu_time_millis: 10, usercpu_time_millis_training: 10,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.784, f_measure: 0.7938, kappa: 0.5738, kb_relative_information_score: 572.7807, mean_absolute_error: 0.205, mean_prior_absolute_error: 0.4859, number_of_instances: 1000, precision: 0.7939, predictive_accuracy: 0.795, prior_entropy: 0.9796, recall: 0.795, relative_absolute_error: 0.4219, root_mean_prior_squared_error: 0.4929, root_mean_squared_error: 0.4528, root_relative_squared_error: 0.9186, scimark_benchmark: 1465.2979,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.8907, f_measure: 0.8966, kappa: 0.7866, kb_relative_information_score: 785.3068, mean_absolute_error: 0.103, mean_prior_absolute_error: 0.4859, number_of_instances: 1000, precision: 0.8969, predictive_accuracy: 0.897, prior_entropy: 0.9796, recall: 0.897, relative_absolute_error: 0.212, root_mean_prior_squared_error: 0.4929, root_mean_squared_error: 0.3209, root_relative_squared_error: 0.6511, scimark_benchmark: 1353.5686, usercpu_time_millis: 20, usercpu_time_millis_training: 20,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.4951, f_measure: 0.4306, kb_relative_information_score: -0.0712, mean_absolute_error: 0.4859, mean_prior_absolute_error: 0.4859, number_of_instances: 1000, precision: 0.3411, predictive_accuracy: 0.584, prior_entropy: 0.9796, recall: 0.584, relative_absolute_error: 1, root_mean_prior_squared_error: 0.4929, root_mean_squared_error: 0.4929, root_relative_squared_error: 1, scimark_benchmark: 1505.597,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9049, f_measure: 0.9088, kappa: 0.8119, kb_relative_information_score: 780.0045, mean_absolute_error: 0.1106, mean_prior_absolute_error: 0.4859, number_of_instances: 1000, precision: 0.9089, predictive_accuracy: 0.909, prior_entropy: 0.9796, recall: 0.909, relative_absolute_error: 0.2276, root_mean_prior_squared_error: 0.4929, root_mean_squared_error: 0.2916, root_relative_squared_error: 0.5915, scimark_benchmark: 1353.5686, usercpu_time_millis: 10, usercpu_time_millis_training: 10,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.8659, f_measure: 0.8209, kappa: 0.6343, kb_relative_information_score: 613.4057, mean_absolute_error: 0.1876, mean_prior_absolute_error: 0.4859, number_of_instances: 1000, precision: 0.8242, predictive_accuracy: 0.82, prior_entropy: 0.9796, recall: 0.82, relative_absolute_error: 0.386, root_mean_prior_squared_error: 0.4929, root_mean_squared_error: 0.4142, root_relative_squared_error: 0.8403, scimark_benchmark: 927.0753, usercpu_time_millis: 90, usercpu_time_millis_testing: 20, usercpu_time_millis_training: 70,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.859, f_measure: 0.8138, kappa: 0.6195, kb_relative_information_score: 570.6368, mean_absolute_error: 0.2119, mean_prior_absolute_error: 0.4859, number_of_instances: 1000, precision: 0.8165, predictive_accuracy: 0.813, prior_entropy: 0.9796, recall: 0.813, relative_absolute_error: 0.4361, root_mean_prior_squared_error: 0.4929, root_mean_squared_error: 0.3963, root_relative_squared_error: 0.804, scimark_benchmark: 945.6434, usercpu_time_millis: 80, usercpu_time_millis_testing: 20, usercpu_time_millis_training: 60,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.8623, f_measure: 0.8056, kappa: 0.6013, kb_relative_information_score: 451.2936, mean_absolute_error: 0.2789, mean_prior_absolute_error: 0.4859, number_of_instances: 1000, precision: 0.8067, predictive_accuracy: 0.805, prior_entropy: 0.9796, recall: 0.805, relative_absolute_error: 0.5739, root_mean_prior_squared_error: 0.4929, root_mean_squared_error: 0.379, root_relative_squared_error: 0.7689, scimark_benchmark: 941.7954, usercpu_time_millis: 70, usercpu_time_millis_testing: 10, usercpu_time_millis_training: 60,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.8667, f_measure: 0.8055, kappa: 0.6007, kb_relative_information_score: 442.7332, mean_absolute_error: 0.2839, mean_prior_absolute_error: 0.4859, number_of_instances: 1000, precision: 0.8063, predictive_accuracy: 0.805, prior_entropy: 0.9796, recall: 0.805, relative_absolute_error: 0.5843, root_mean_prior_squared_error: 0.4929, root_mean_squared_error: 0.3772, root_relative_squared_error: 0.7652, scimark_benchmark: 923.7642, usercpu_time_millis: 70, usercpu_time_millis_testing: 10, usercpu_time_millis_training: 60,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.8667, f_measure: 0.8055, kappa: 0.6007, kb_relative_information_score: 442.7332, mean_absolute_error: 0.2839, mean_prior_absolute_error: 0.4859, number_of_instances: 1000, precision: 0.8063, predictive_accuracy: 0.805, prior_entropy: 0.9796, recall: 0.805, relative_absolute_error: 0.5843, root_mean_prior_squared_error: 0.4929, root_mean_squared_error: 0.3772, root_relative_squared_error: 0.7652, scimark_benchmark: 894.7455, usercpu_time_millis: 70, usercpu_time_millis_testing: 20, usercpu_time_millis_training: 50,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9699, f_measure: 0.9148, kappa: 0.8244, kb_relative_information_score: 807.928, mean_absolute_error: 0.0936, mean_prior_absolute_error: 0.4859, number_of_instances: 1000, precision: 0.9149, predictive_accuracy: 0.915, prior_entropy: 0.9796, recall: 0.915, relative_absolute_error: 0.1926, root_mean_prior_squared_error: 0.4929, root_mean_squared_error: 0.2779, root_relative_squared_error: 0.5638, scimark_benchmark: 940.2922, usercpu_time_millis: 450, usercpu_time_millis_testing: 10, usercpu_time_millis_training: 440,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9587, f_measure: 0.8876, kappa: 0.7681, kb_relative_information_score: 764.3395, mean_absolute_error: 0.114, mean_prior_absolute_error: 0.4859, number_of_instances: 1000, precision: 0.8878, predictive_accuracy: 0.888, prior_entropy: 0.9796, recall: 0.888, relative_absolute_error: 0.2347, root_mean_prior_squared_error: 0.4929, root_mean_squared_error: 0.3071, root_relative_squared_error: 0.6231, scimark_benchmark: 938.2848, usercpu_time_millis: 210, usercpu_time_millis_training: 210,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9366, f_measure: 0.8541, kappa: 0.6997, kb_relative_information_score: 695.8533, mean_absolute_error: 0.1465, mean_prior_absolute_error: 0.4859, number_of_instances: 1000, precision: 0.8541, predictive_accuracy: 0.854, prior_entropy: 0.9796, recall: 0.854, relative_absolute_error: 0.3014, root_mean_prior_squared_error: 0.4929, root_mean_squared_error: 0.3487, root_relative_squared_error: 0.7074, scimark_benchmark: 936.6206, usercpu_time_millis: 100, usercpu_time_millis_training: 100,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.8956, f_measure: 0.811, kappa: 0.6143, kb_relative_information_score: 609.2902, mean_absolute_error: 0.1874, mean_prior_absolute_error: 0.4859, number_of_instances: 1000, precision: 0.8146, predictive_accuracy: 0.81, prior_entropy: 0.9796, recall: 0.81, relative_absolute_error: 0.3856, root_mean_prior_squared_error: 0.4929, root_mean_squared_error: 0.4, root_relative_squared_error: 0.8114, scimark_benchmark: 933.8635, usercpu_time_millis: 80, usercpu_time_millis_training: 80,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.8569, f_measure: 0.7905, kappa: 0.5761, kb_relative_information_score: 564.4246, mean_absolute_error: 0.2086, mean_prior_absolute_error: 0.4859, number_of_instances: 1000, precision: 0.7999, predictive_accuracy: 0.789, prior_entropy: 0.9796, recall: 0.789, relative_absolute_error: 0.4293, root_mean_prior_squared_error: 0.4929, root_mean_squared_error: 0.4413, root_relative_squared_error: 0.8954, scimark_benchmark: 938.9865, usercpu_time_millis: 30, usercpu_time_millis_testing: 10, usercpu_time_millis_training: 20,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9785, f_measure: 0.9249, kappa: 0.8454, kb_relative_information_score: 805.4856, mean_absolute_error: 0.0984, mean_prior_absolute_error: 0.4859, number_of_instances: 1000, precision: 0.9249, predictive_accuracy: 0.925, prior_entropy: 0.9796, recall: 0.925, relative_absolute_error: 0.2025, root_mean_prior_squared_error: 0.4929, root_mean_squared_error: 0.2352, root_relative_squared_error: 0.4772, scimark_benchmark: 933.8635, usercpu_time_millis: 290, usercpu_time_millis_training: 290,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9656, f_measure: 0.8997, kappa: 0.793, kb_relative_information_score: 690.8123, mean_absolute_error: 0.1614, mean_prior_absolute_error: 0.4859, number_of_instances: 1000, precision: 0.8999, predictive_accuracy: 0.9, prior_entropy: 0.9796, recall: 0.9, relative_absolute_error: 0.3321, root_mean_prior_squared_error: 0.4929, root_mean_squared_error: 0.269, root_relative_squared_error: 0.5458, scimark_benchmark: 947.9494, usercpu_time_millis: 30, usercpu_time_millis_training: 30,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9464, f_measure: 0.8746, kappa: 0.7412, kb_relative_information_score: 605.7039, mean_absolute_error: 0.2078, mean_prior_absolute_error: 0.4859, number_of_instances: 1000, precision: 0.8747, predictive_accuracy: 0.875, prior_entropy: 0.9796, recall: 0.875, relative_absolute_error: 0.4276, root_mean_prior_squared_error: 0.4929, root_mean_squared_error: 0.2999, root_relative_squared_error: 0.6084, scimark_benchmark: 929.566, usercpu_time_millis: 20, usercpu_time_millis_training: 20,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.4951, f_measure: 0.4306, kb_relative_information_score: -0.0712, mean_absolute_error: 0.4859, mean_prior_absolute_error: 0.4859, number_of_instances: 1000, precision: 0.3411, predictive_accuracy: 0.584, prior_entropy: 0.9796, recall: 0.584, relative_absolute_error: 1, root_mean_prior_squared_error: 0.4929, root_mean_squared_error: 0.4929, root_relative_squared_error: 1, scimark_benchmark: 940.2922,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.7858, f_measure: 0.698, kappa: 0.4062, kb_relative_information_score: 249.9657, mean_absolute_error: 0.3735, mean_prior_absolute_error: 0.4859, number_of_instances: 1000, precision: 0.7288, predictive_accuracy: 0.697, prior_entropy: 0.9796, recall: 0.697, relative_absolute_error: 0.7687, root_mean_prior_squared_error: 0.4929, root_mean_squared_error: 0.4391, root_relative_squared_error: 0.8909, scimark_benchmark: 934.5243, usercpu_time_millis: 20, usercpu_time_millis_training: 20,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9281, f_measure: 0.8706, kappa: 0.7329, kb_relative_information_score: 616.837, mean_absolute_error: 0.1975, mean_prior_absolute_error: 0.4859, number_of_instances: 1000, precision: 0.8707, predictive_accuracy: 0.871, prior_entropy: 0.9796, recall: 0.871, relative_absolute_error: 0.4064, root_mean_prior_squared_error: 0.4929, root_mean_squared_error: 0.3174, root_relative_squared_error: 0.644, scimark_benchmark: 933.8635, usercpu_time_millis: 30, usercpu_time_millis_training: 30,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9658, f_measure: 0.92, kappa: 0.8352, kb_relative_information_score: 792.1734, mean_absolute_error: 0.1046, mean_prior_absolute_error: 0.4859, number_of_instances: 1000, precision: 0.92, predictive_accuracy: 0.92, prior_entropy: 0.9796, recall: 0.92, relative_absolute_error: 0.2153, root_mean_prior_squared_error: 0.4929, root_mean_squared_error: 0.2474, root_relative_squared_error: 0.502, scimark_benchmark: 943.6956, usercpu_time_millis: 60, usercpu_time_millis_training: 60,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.4951, f_measure: 0.4306, kb_relative_information_score: -0.0712, mean_absolute_error: 0.4859, mean_prior_absolute_error: 0.4859, number_of_instances: 1000, precision: 0.3411, predictive_accuracy: 0.584, prior_entropy: 0.9796, recall: 0.584, relative_absolute_error: 1, root_mean_prior_squared_error: 0.4929, root_mean_squared_error: 0.4929, root_relative_squared_error: 1, scimark_benchmark: 932.3943,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9464, f_measure: 0.8746, kappa: 0.7412, kb_relative_information_score: 605.7039, mean_absolute_error: 0.2078, mean_prior_absolute_error: 0.4859, number_of_instances: 1000, precision: 0.8747, predictive_accuracy: 0.875, prior_entropy: 0.9796, recall: 0.875, relative_absolute_error: 0.4276, root_mean_prior_squared_error: 0.4929, root_mean_squared_error: 0.2999, root_relative_squared_error: 0.6084, scimark_benchmark: 911.0478, usercpu_time_millis: 30, usercpu_time_millis_training: 30,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.5, f_measure: 0.4306, kb_relative_information_score: 133.1435, mean_absolute_error: 0.416, mean_prior_absolute_error: 0.4859, number_of_instances: 1000, precision: 0.3411, predictive_accuracy: 0.584, prior_entropy: 0.9796, recall: 0.584, relative_absolute_error: 0.8561, root_mean_prior_squared_error: 0.4929, root_mean_squared_error: 0.645, root_relative_squared_error: 1.3086, scimark_benchmark: 933.8635,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9049, f_measure: 0.9088, kappa: 0.8119, kb_relative_information_score: 780.0045, mean_absolute_error: 0.1106, mean_prior_absolute_error: 0.4859, number_of_instances: 1000, precision: 0.9089, predictive_accuracy: 0.909, prior_entropy: 0.9796, recall: 0.909, relative_absolute_error: 0.2276, root_mean_prior_squared_error: 0.4929, root_mean_squared_error: 0.2916, root_relative_squared_error: 0.5915, scimark_benchmark: 929.0255, usercpu_time_millis: 20, usercpu_time_millis_training: 20,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9443, f_measure: 0.9218, kappa: 0.8386, kb_relative_information_score: 454.5324, mean_absolute_error: 0.2972, mean_prior_absolute_error: 0.4859, number_of_instances: 1000, precision: 0.922, predictive_accuracy: 0.922, prior_entropy: 0.9796, recall: 0.922, relative_absolute_error: 0.6116, root_mean_prior_squared_error: 0.4929, root_mean_squared_error: 0.3291, root_relative_squared_error: 0.6677, scimark_benchmark: 947.9494, usercpu_time_millis: 910, usercpu_time_millis_training: 910,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.8078, f_measure: 0.8061, kappa: 0.6051, kb_relative_information_score: 407.4213, mean_absolute_error: 0.3069, mean_prior_absolute_error: 0.4859, number_of_instances: 1000, precision: 0.8108, predictive_accuracy: 0.805, prior_entropy: 0.9796, recall: 0.805, relative_absolute_error: 0.6315, root_mean_prior_squared_error: 0.4929, root_mean_squared_error: 0.3894, root_relative_squared_error: 0.79, scimark_benchmark: 917.7039,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.7983, f_measure: 0.7884, kappa: 0.5764, kb_relative_information_score: 556.112, mean_absolute_error: 0.213, mean_prior_absolute_error: 0.4859, number_of_instances: 1000, precision: 0.806, predictive_accuracy: 0.787, prior_entropy: 0.9796, recall: 0.787, relative_absolute_error: 0.4383, root_mean_prior_squared_error: 0.4929, root_mean_squared_error: 0.4615, root_relative_squared_error: 0.9363, scimark_benchmark: 901.0726,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9574, f_measure: 0.893, kappa: 0.7797, kb_relative_information_score: 752.4534, mean_absolute_error: 0.122, mean_prior_absolute_error: 0.4859, number_of_instances: 1000, precision: 0.893, predictive_accuracy: 0.893, prior_entropy: 0.9796, recall: 0.893, relative_absolute_error: 0.2511, root_mean_prior_squared_error: 0.4929, root_mean_squared_error: 0.2804, root_relative_squared_error: 0.5688, scimark_benchmark: 945.6434, usercpu_time_millis: 2980, usercpu_time_millis_testing: 2970, usercpu_time_millis_training: 10,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9319, f_measure: 0.9268, kappa: 0.849, kb_relative_information_score: 847.5853, mean_absolute_error: 0.0731, mean_prior_absolute_error: 0.4859, number_of_instances: 1000, precision: 0.927, predictive_accuracy: 0.927, prior_entropy: 0.9796, recall: 0.927, relative_absolute_error: 0.1505, root_mean_prior_squared_error: 0.4929, root_mean_squared_error: 0.2693, root_relative_squared_error: 0.5463, scimark_benchmark: 889.9795, usercpu_time_millis: 1760, usercpu_time_millis_testing: 40, usercpu_time_millis_training: 1720,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9717, f_measure: 0.9219, kappa: 0.8391, kb_relative_information_score: 841.0685, mean_absolute_error: 0.0764, mean_prior_absolute_error: 0.4859, number_of_instances: 1000, precision: 0.9219, predictive_accuracy: 0.922, prior_entropy: 0.9796, recall: 0.922, relative_absolute_error: 0.1571, root_mean_prior_squared_error: 0.4929, root_mean_squared_error: 0.2616, root_relative_squared_error: 0.5307, scimark_benchmark: 935.8834, usercpu_time_millis: 700, usercpu_time_millis_training: 700,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.7958, f_measure: 0.762, kappa: 0.5133, kb_relative_information_score: 320.0977, mean_absolute_error: 0.3477, mean_prior_absolute_error: 0.4859, number_of_instances: 1000, precision: 0.7645, predictive_accuracy: 0.761, prior_entropy: 0.9796, recall: 0.761, relative_absolute_error: 0.7155, root_mean_prior_squared_error: 0.4929, root_mean_squared_error: 0.425, root_relative_squared_error: 0.8622, scimark_benchmark: 935.8834, usercpu_time_millis: 340, usercpu_time_millis_training: 340,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.9747, f_measure: 0.9127, kappa: 0.8198, kb_relative_information_score: 818.8285, mean_absolute_error: 0.0876, mean_prior_absolute_error: 0.4859, number_of_instances: 1000, precision: 0.913, predictive_accuracy: 0.913, prior_entropy: 0.9796, recall: 0.913, relative_absolute_error: 0.1804, root_mean_prior_squared_error: 0.4929, root_mean_squared_error: 0.259, root_relative_squared_error: 0.5255, scimark_benchmark: 931.4202, usercpu_time_millis: 340, usercpu_time_millis_testing: 10, usercpu_time_millis_training: 330,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.963, f_measure: 0.8987, kappa: 0.791, kb_relative_information_score: 731.952, mean_absolute_error: 0.1361, mean_prior_absolute_error: 0.4859, number_of_instances: 1000, precision: 0.8988, predictive_accuracy: 0.899, prior_entropy: 0.9796, recall: 0.899, relative_absolute_error: 0.2801, root_mean_prior_squared_error: 0.4929, root_mean_squared_error: 0.271, root_relative_squared_error: 0.5498, scimark_benchmark: 935.8986,
0 likes - 0 downloads - 0 reach - area_under_roc_curve: 0.7833, f_measure: 0.785, kappa: 0.5603, kb_relative_information_score: 549.8613, mean_absolute_error: 0.216, mean_prior_absolute_error: 0.4859, number_of_instances: 1000, precision: 0.7875, predictive_accuracy: 0.784, prior_entropy: 0.9796, recall: 0.784, relative_absolute_error: 0.4445, root_mean_prior_squared_error: 0.4929, root_mean_squared_error: 0.4648, root_relative_squared_error: 0.9429, scimark_benchmark: 940.3346, usercpu_time_millis: 80, usercpu_time_millis_testing: 20, usercpu_time_millis_training: 60,

    Metric:

    Timeline

    Plotting contribution timeline

    Leaderboard

    Rank Name Top Score Entries Highest rank

    Note: The leaderboard ignores resubmissions of previous solutions, as well as parameter variations that do not improve performance.

    Challenge

    In supervised classification, you are given an input dataset in which instances are labeled with a certain class. The goal is to build a model that predicts the class for future unlabeled instances. The model is evaluated using a train-test procedure, e.g. cross-validation.

    To make results by different users comparable, you are given the exact train-test folds to be used, and you need to return at least the predictions generated by your model for each of the test instances. OpenML will use these predictions to calculate a range of evaluation measures on the server.

    You can also upload your own evaluation measures, provided that the code for doing so is available from the implementation used. For extremely large datasets, it may be infeasible to upload all predictions. In those cases, you need to compute and provide the evaluations yourself.

    Optionally, you can upload the model trained on all the input data. There is no restriction on the file format, but please use a well-known format or PMML.

    Given inputs

    Expected outputs

    evaluations A list of user-defined evaluations of the task as key-value pairs. KeyValue (optional)
    model A file containing the model built on all the input data. File (optional)
    predictions The desired output format Predictions (optional)

    How to submit runs

    Using your favorite machine learning environment

    Download this task directly in your environment and automatically upload your results

    OpenML bootcamp

    From your own software

    Use one of our APIs to download data from OpenML and upload your results

    OpenML APIs