DEVELOPMENT... OpenML
Run
95606

Run 95606

Task 3812 (Supervised Classification) arsenic-female-bladder Uploaded 08-12-2014 by Felicia West
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

weka.ZeroR(1)Weka implementation of ZeroR
weka.A1DE(2)_F1
weka.A1DE(2)_M1.0
weka.AdaBoostM1_DecisionStump(2)_I10
weka.AdaBoostM1_DecisionStump(2)_P100
weka.AdaBoostM1_DecisionStump(2)_S1
weka.AdaBoostM1_DecisionStump(2)_Wweka.classifiers.trees.DecisionStump
weka.AdaBoostM1_IBk(2)_I20
weka.AdaBoostM1_IBk(2)_P100
weka.AdaBoostM1_IBk(2)_S1
weka.AdaBoostM1_IBk(2)_Wweka.classifiers.lazy.IBk
weka.Bagging_NaiveBayes(2)_I80
weka.Bagging_NaiveBayes(2)_P100
weka.Bagging_NaiveBayes(2)_S1
weka.Bagging_NaiveBayes(2)_Wweka.classifiers.bayes.NaiveBayes
weka.Bagging_NaiveBayes(2)_num-slots1
weka.Bagging_OneR(2)_I160
weka.Bagging_OneR(2)_P100
weka.Bagging_OneR(2)_S1
weka.Bagging_OneR(2)_Wweka.classifiers.rules.OneR
weka.Bagging_OneR(2)_num-slots1
weka.BayesianLogisticRegression(2)_Dtrue
weka.BayesianLogisticRegression(2)_F2
weka.BayesianLogisticRegression(2)_H1
weka.BayesianLogisticRegression(2)_I100
weka.BayesianLogisticRegression(2)_Ntrue
weka.BayesianLogisticRegression(2)_P1
weka.BayesianLogisticRegression(2)_RR:0.01-316,3.16
weka.BayesianLogisticRegression(2)_S0.5
weka.BayesianLogisticRegression(2)_Tl5.0E-4
weka.BayesianLogisticRegression(2)_V0.27
weka.BayesianLogisticRegression(2)_seed1
weka.ComplementNaiveBayes(2)_S1.0
weka.GaussianProcesses_PolyKernel(3)_L1.0
weka.GaussianProcesses_PolyKernel(3)_N0
weka.IBk(2)_Atrue
weka.IBk(2)_K1
weka.IBk(2)_W0
weka.OneR(3)_B6
weka.PolyKernel(4)_C250007
weka.PolyKernel(4)_E1.0
weka.GaussianProcesses_NormalizedPolyKernel(2)_L1.0
weka.GaussianProcesses_NormalizedPolyKernel(2)_N0
weka.GaussianProcesses_NormalizedPolyKernel(2)_Kweka.classifiers.functions.supportVector.NormalizedPolyKernel
weka.NormalizedPolyKernel(2)_E2.0
weka.NormalizedPolyKernel(2)_C250007
weka.CVParameterSelection_ZeroR(2)_X10
weka.CVParameterSelection_ZeroR(2)_S1
weka.CVParameterSelection_ZeroR(2)_Wweka.classifiers.rules.ZeroR
weka.J48(13)_C0.25
weka.J48(13)_M2
weka.J48(28)_C0.25
weka.J48(28)_M2
weka.REPTree(9)_M2
weka.REPTree(9)_V0.001
weka.REPTree(9)_N3
weka.REPTree(9)_S1
weka.REPTree(9)_L-1
weka.REPTree(9)_I0.0
weka.RandomTree(10)_K0
weka.RandomTree(10)_M1.0
weka.RandomTree(10)_V0.001
weka.RandomTree(10)_S1
weka.RandomForest(5)_I100
weka.RandomForest(5)_K0
weka.RandomForest(5)_S1
weka.RandomForest(5)_num-slots1
weka.MultilayerPerceptronCS(1)_Ha
weka.A1DE(4)_F1
weka.A1DE(4)_M1.0
weka.BayesNet_K2(6)_Dtrue
weka.BayesNet_K2(6)_Qweka.classifiers.bayes.net.search.local.K2
weka.K2(5)_P1
weka.K2(5)_SBAYES
weka.LibSVM(2)_S0
weka.LibSVM(2)_K2
weka.LibSVM(2)_D3
weka.LibSVM(2)_G0.0
weka.LibSVM(2)_R0.0
weka.LibSVM(2)_C1.0
weka.LibSVM(2)_N0.5
weka.LibSVM(2)_P0.1
weka.LibSVM(2)_M40.0
weka.LibSVM(2)_E0.001
weka.LibSVM(2)_model/Users/joa/Downloads/weka-3-7-12
weka.LibSVM(2)_seed1
weka.KernelLogisticRegression_RBFKernel(1)_S1
weka.KernelLogisticRegression_RBFKernel(1)_Kweka.classifiers.functions.supportVector.RBFKernel
weka.KernelLogisticRegression_RBFKernel(1)_L0.01
weka.KernelLogisticRegression_RBFKernel(1)_P1
weka.KernelLogisticRegression_RBFKernel(1)_E1
weka.RBFKernel(3)_G0.01
weka.RBFKernel(3)_C250007
weka.Bagging_REPTree(8)_P100
weka.Bagging_REPTree(8)_S1
weka.Bagging_REPTree(8)_num-slots1
weka.Bagging_REPTree(8)_I10
weka.Bagging_REPTree(8)_Wweka.classifiers.trees.REPTree
weka.ADTree(4)_B10
weka.ADTree(4)_E-3
weka.ADTree(4)_S1
weka.LADTree(4)_B10
weka.FilteredClassifier_Discretize_J48(4)_Fweka.filters.supervised.attribute.Discretize
weka.FilteredClassifier_Discretize_J48(4)_Wweka.classifiers.trees.J48
weka.Discretize(3)_Rfirst-last
weka.Discretize(3)_precision6
weka.RandomForest(8)_K0
weka.RandomForest(8)_S1
weka.RandomForest(8)_num-slots1

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

model
Model readable

A human-readable description of the model that was built.

model
Model serialized

A serialized description of the model that can be read by the tool that generated it.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

21 Evaluation measures

0.76
Per class
0.0109
509872372.6082
0.8326
Per class
0.2096
-13.592
0.1966
0.2462
559
Per class
[Sun Microsystems Inc., 1.6.0_20, amd64, Linux, 2.6.35.14-106.fc14.x86_64]
0.88
Per class
0.8748
0.5956
0.8748
Per class
0.7988
0.3502
0.3181
0.9084
934.4754