DEVELOPMENT... OpenML
Flow
moa.AMRules

moa.AMRules

Visibility: public Uploaded 23-04-2014 by Jason Moa_2014.03 13 runs
0 likes downloaded by 1 people 0 issues 0 downvotes , 1 total downloads
  • Verified_Supervised_Data_Stream_Classification
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Moa implementation of AMRules

Parameters

AnoAnomalyDetection: Disable anomaly Detection.default: false
HDoNotDetectChanges: Drift Detection. Page-Hinkley.default: false
OsetOrderedRulesOn: orderedRules.default: false
PpredictionFunctionOption: The prediction function to use.default: Adaptative
apageHinckleyAlpha: The alpha value to use in the Page Hinckley change detection tests.default: 0.5
csplitConfidence: Hoeffding Bound Parameter. The allowable error in split decision, values closer to 0 will take longer to decide.default: 1.0E-7
dlearningRatio_Decay_set_constant: Learning Ratio Decay in Perceptron set to be constant. (The next parameter).default: false
ggracePeriod: Hoeffding Bound Parameter. The number of instances a leaf should observe between split attempts.default: 200
lpageHinckleyThreshold: The threshold value (Lambda) to be used in the Page Hinckley change detection tests.default: 50
mmultivariateAnomalyProbabilityThresholdd: Multivariate anomaly threshold value.default: 0.99
nanomalyThreshold: The threshold value of anomalies to be used in the anomaly detection.default: 30
slearningRatio: Constante Learning Ratio to use for training the Perceptrons in the leaves.default: 0.01
ttieThreshold: Hoeffding Bound Parameter. Threshold below which a split will be forced to break ties.default: 0.05
uunivariateAnomalyprobabilityThreshold: Univariate anomaly threshold value.default: 0.1
vverbosity: Output Verbosity Control Level. 1 (Less) to 4 (More)default: 1

0
Runs

List all runs
Parameter:
Rendering chart
Rendering table