DEVELOPMENT... OpenML
Flow
TEST57dbb999absklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeline.Pipeline(ohe=sklearn.preprocessing.data.OneHotEncoder,scaler=sklearn.preprocessing.data.StandardScaler,fu=sklearn.pipeline.FeatureUnion(pca=sklearn.decomposition.truncated_svd.TruncatedSVD,fs=sklearn.feature_selection.univariate_selection.SelectPercentile),boosting=sklearn.ensemble.weight_boosting.AdaBoostClassifier(base_estimator=sklearn.tree.tree.DecisionTreeClassifier)))

TEST57dbb999absklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.pipeline.Pipeline(ohe=sklearn.preprocessing.data.OneHotEncoder,scaler=sklearn.preprocessing.data.StandardScaler,fu=sklearn.pipeline.FeatureUnion(pca=sklearn.decomposition.truncated_svd.TruncatedSVD,fs=sklearn.feature_selection.univariate_selection.SelectPercentile),boosting=sklearn.ensemble.weight_boosting.AdaBoostClassifier(base_estimator=sklearn.tree.tree.DecisionTreeClassifier)))

Visibility: public Uploaded 18-10-2017 by Kathleen Rodriguez sklearn==0.18.2 numpy>=1.6.1 scipy>=0.9 0 runs
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Automatically created scikit-learn flow.

Components

Parameters

cvdefault: {"oml-python:serialized_object": "cv_object", "value": {"name": "sklearn.model_selection._split.StratifiedKFold", "parameters": {"n_splits": "5", "random_state": "null", "shuffle": "true"}}}
error_scoredefault: "raise"
estimatordefault: {"oml-python:serialized_object": "component_reference", "value": {"key": "estimator", "step_name": null}}
fit_params
iiddefault: true
n_iterdefault: 10
n_jobsdefault: 1
param_distributionsdefault: {"boosting__base_estimator__max_depth": {"oml-python:serialized_object": "rv_frozen", "value": {"dist": "scipy.stats._discrete_distns.randint_gen", "a": 1, "b": 9, "args": [1, 10], "kwds": {}}}, "boosting__learning_rate": {"oml-python:serialized_object": "rv_frozen", "value": {"dist": "scipy.stats._continuous_distns.uniform_gen", "a": 0.0, "b": 1.0, "args": [0.01, 0.99], "kwds": {}}}, "boosting__n_estimators": [1, 5, 10, 100]}
pre_dispatchdefault: "2*n_jobs"
random_statedefault: null
refitdefault: true
return_train_scoredefault: true
scoringdefault: null
verbosedefault: 0

0
Runs

List all runs
Parameter:
Rendering chart
Rendering table