DEVELOPMENT... OpenML
Flow
weka.MultiSearch_RandomizableFilteredClassifier_BayesNet

weka.MultiSearch_RandomizableFilteredClassifier_BayesNet

Visibility: public Uploaded 20-04-2017 by Jamie Osborne Weka_3.8.1 2 runs
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • Verified_Supervised_Classification weka weka_3.8.1
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Weka implementation of MultiSearch

Components

Wweka.RandomizableFilteredClassifier_BayesNet(1)Full name of base classifier. (default: weka.classifiers.functions.LinearRegression)

Parameters

-do-not-check-capabilitiesIf set, classifier capabilities are not checked before classifier is built (use with caution).
CDo not try to eliminate colinear attributes.
EDetermines the parameter used for evaluation: CC = Correlation coefficient MCC = Matthews correlation coefficient RMSE = Root mean squared error RRSE = Root relative squared error MAE = Mean absolute error RAE = Root absolute error COMB = Combined = (1-abs(CC)) + RRSE + RAE ACC = Accuracy KAP = Kappa PREC = Precision (per class) WPREC = Weighted precision REC = Recall (per class) WREC = Weighted recall AUC = Area under ROC (per class) WAUC = Weighted area under ROC PRC = Area under PRC (per class) WPRC = Weighted area under PRC FM = F-Measure (per class) WFM = Weighted F-Measure TPR = True positive rate (per class) TNR = True negative rate (per class) FPR = False positive rate (per class) FNR = False negative rate (per class) (default: CC)default: CC
RSet ridge parameter (default 1.0e-8).
SRandom number seed. (default 1)default: 1
WFull name of base classifier. (default: weka.classifiers.functions.LinearRegression)default: weka.classifiers.meta.RandomizableFilteredClassifier
additional-statsOutput additional statistics.
algorithmA search algorithm.default: weka.classifiers.meta.multisearch.DefaultSearch -sample-size 100.0 -initial-folds 2 -subsequent-folds 10 -initial-test-set . -subsequent-test-set . -num-slots 1 -num-slots 1
batch-sizeThe desired batch size for batch prediction (default 100).
class-labelThe class label index to retrieve the metric for (if applicable).default: 1
log-fileThe log file to log the messages to. (default: none)default: C:\Program Files\Weka-3-8
minimalConserve memory, don't keep dataset header and means/stdevs. Model cannot be printed out if this option is enabled. (default: keep data)
num-decimal-placesThe number of decimal places for the output of numbers in the model (default 2).
output-debug-infoIf set, classifier is run in debug mode and may output additional info to the console
searchA property search setup.

0
Runs

List all runs
Parameter:
Rendering chart
Rendering table