DEVELOPMENT... OpenML
Flow
sklearn.pipeline.Pipeline(DualImputer=helper.dual_imputer.DualImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder,standardscaler=sklearn.preprocessing.data.StandardScaler,logisticregression=sklearn.linear_model.logistic.LogisticRegression)

sklearn.pipeline.Pipeline(DualImputer=helper.dual_imputer.DualImputer,onehotencoder=sklearn.preprocessing.data.OneHotEncoder,standardscaler=sklearn.preprocessing.data.StandardScaler,logisticregression=sklearn.linear_model.logistic.LogisticRegression)

Visibility: public Uploaded 09-04-2017 by Michael Torres sklearn==0.18.1 numpy>=1.6.1 scipy>=0.9 2 runs
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • Verified_Supervised_Classification
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Automatically created scikit-learn flow.

Parameters

stepsdefault: [{"oml-python:serialized_object": "component_reference", "value": {"key": "DualImputer", "step_name": "DualImputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "onehotencoder", "step_name": "onehotencoder"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "standardscaler", "step_name": "standardscaler"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "logisticregression", "step_name": "logisticregression"}}]

0
Runs

List all runs
Parameter:
Rendering chart
Rendering table