DEVELOPMENT... OpenML
Flow
sklearn.pipeline.Pipeline(dualimputer=helper.dual_imputer.DualImputer,standardscaler=sklearn.preprocessing.data.StandardScaler,polynomialfeatures=sklearn.preprocessing.data.PolynomialFeatures,pca=sklearn.decomposition.pca.PCA,randomforestclassifier=sklearn.ensemble.forest.RandomForestClassifier)

sklearn.pipeline.Pipeline(dualimputer=helper.dual_imputer.DualImputer,standardscaler=sklearn.preprocessing.data.StandardScaler,polynomialfeatures=sklearn.preprocessing.data.PolynomialFeatures,pca=sklearn.decomposition.pca.PCA,randomforestclassifier=sklearn.ensemble.forest.RandomForestClassifier)

Visibility: public Uploaded 03-04-2017 by Michael Torres sklearn==0.18.1 numpy>=1.6.1 scipy>=0.9 1 runs
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • Verified_Supervised_Classification
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Automatically created scikit-learn flow.

Parameters

stepsdefault: [{"oml-python:serialized_object": "component_reference", "value": {"key": "dualimputer", "step_name": "dualimputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "standardscaler", "step_name": "standardscaler"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "polynomialfeatures", "step_name": "polynomialfeatures"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "pca", "step_name": "pca"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "randomforestclassifier", "step_name": "randomforestclassifier"}}]

0
Runs

List all runs
Parameter:
Rendering chart
Rendering table