DEVELOPMENT... OpenML
Flow
weka.IterativeClassifierOptimizer_LogitBoost_DecisionStump

weka.IterativeClassifierOptimizer_LogitBoost_DecisionStump

Visibility: public Uploaded 07-10-2014 by Felicia West Weka_3.7.12-SNAPSHOT 540 runs
0 likes downloaded by 2 people 0 issues 0 downvotes , 2 total downloads
  • study_2 study_37 Verified_Learning_Curve,Verified_Supervised_Classification
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Weka implementation of IterativeClassifierOptimizer

Components

Wweka.LogitBoost_DecisionStump(2)Full name of base classifier. (default: weka.classifiers.meta.LogitBoost)

Parameters

-do-not-check-capabilitiesIf set, classifier capabilities are not checked before classifier is built (use with caution).
AIf set, average estimate is used rather than one estimate from pooled predictions.
EThe number of threads to use, which should be >= size of thread pool. (default 1)default: 1
FNumber of folds for cross-validation. (default 10)default: 10
HShrinkage parameter. (default 1)
IStep size for the evaluation, if evaluation is time consuming. (default 1)default: 1
LThe number of iterations to look ahead for to find a better optimum. (default 50)default: 50
OThe size of the thread pool, for example, the number of cores in the CPU. (default 1)
PThe size of the thread pool, for example, the number of cores in the CPU. (default 1)default: 1
QUse resampling instead of reweighting for boosting.
RNumber of runs for cross-validation. (default 1)default: 1
SRandom number seed. (default 1)default: 1
WFull name of base classifier. (default: weka.classifiers.meta.LogitBoost)default: weka.classifiers.meta.LogitBoost
ZZ max threshold for responses. (default 3)
class-value-indexClass value index to optimise. Ignored for all but information-retrieval type metrics (such as roc area). If unspecified (or a negative value is supplied), and an information-retrieval metric is specified, then the class-weighted average metric used. (default -1)
metricEvaluation metric to optimise (default rmse). Available metrics: correct,incorrect,kappa,total cost,average cost,kb relative,kb information, correlation,complexity 0,complexity scheme,complexity improvement, mae,rmse,rae,rrse,coverage,region size,tp rate,fp rate,precision,recall, f-measure,mcc,roc area,prc areadefault: RMSE
output-debug-infoIf set, classifier is run in debug mode and may output additional info to the console

0
Runs

List all runs
Parameter:
Rendering chart
Rendering table