DEVELOPMENT... OpenML
Flow
sklearn.preprocessing.imputation.Imputer

sklearn.preprocessing.imputation.Imputer

Visibility: public Uploaded 11-01-2023 by Ann sklearn==0.21.0 numpy>=1.11.0 scipy>=0.17.0 joblib>=0.11 0 runs
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • openml-python python scikit-learn sklearn sklearn_0.21.0
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Imputation transformer for completing missing values.

Parameters

axisThe axis along which to impute - If `axis=0`, then impute along columns - If `axis=1`, then impute along rowsdefault: 0
copyIf True, a copy of X will be created. If False, imputation will be done in-place whenever possible. Note that, in the following cases, a new copy will always be made, even if `copy=False`: - If X is not an array of floating values; - If X is sparse and `missing_values=0`; - If `axis=0` and X is encoded as a CSR matrix; - If `axis=1` and X is encoded as a CSC matrix.default: true
missing_valuesThe placeholder for the missing values. All occurrences of `missing_values` will be imputed. For missing values encoded as np.nan, use the string value "NaN"default: "NaN"
strategyThe imputation strategy - If "mean", then replace missing values using the mean along the axis - If "median", then replace missing values using the median along the axis - If "most_frequent", then replace missing using the most frequent value along the axisdefault: "most_frequent"
verboseControls the verbosity of the imputerdefault: 0

0
Runs

List all runs
Parameter:
Rendering chart
Rendering table