DEVELOPMENT... OpenML
Flow
sklearn.pipeline.FeatureUnion(votingclassifier=sklearn.ensemble.voting_classifier.VotingClassifier(dtc=sklearn.tree.tree.DecisionTreeClassifier,etc=sklearn.tree.tree.ExtraTreeClassifier),functiontransformer=sklearn.preprocessing._function_transformer.FunctionTransformer)

sklearn.pipeline.FeatureUnion(votingclassifier=sklearn.ensemble.voting_classifier.VotingClassifier(dtc=sklearn.tree.tree.DecisionTreeClassifier,etc=sklearn.tree.tree.ExtraTreeClassifier),functiontransformer=sklearn.preprocessing._function_transformer.FunctionTransformer)

Visibility: public Uploaded 13-08-2021 by Cameron Burke sklearn==0.18.1 numpy>=1.6.1 scipy>=0.9 0 runs
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • openml-python python scikit-learn sklearn sklearn_0.18.1
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Concatenates results of multiple transformer objects. This estimator applies a list of transformer objects in parallel to the input data, then concatenates the results. This is useful to combine several feature extraction mechanisms into a single transformer. Parameters of the transformers may be set using its name and the parameter name separated by a '__'. A transformer may be replaced entirely by setting the parameter with its name to another transformer, or removed by setting to ``None``.

Parameters

n_jobsdefault: 1
transformer_listdefault: [{"oml-python:serialized_object": "component_reference", "value": {"key": "votingclassifier", "step_name": "votingclassifier"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "functiontransformer", "step_name": "functiontransformer"}}]
transformer_weightsdefault: null

0
Runs

List all runs
Parameter:
Rendering chart
Rendering table