DEVELOPMENT...
Issue | #Downvotes for this reason | By |
---|
C | Penalty parameter C of the error term | default: 1.0 |
cache_size | Specify the size of the kernel cache (in MB) class_weight : {dict, 'balanced'}, optional Set the parameter C of class i to class_weight[i]*C for SVC. If not given, all classes are supposed to have weight one The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))`` | default: 200 |
class_weight | default: null | |
coef0 | Independent term in kernel function It is only significant in 'poly' and 'sigmoid' | default: 0.0 |
decision_function_shape | Whether to return a one-vs-rest ('ovr') decision function of shape (n_samples, n_classes) as all other classifiers, or the original one-vs-one ('ovo') decision function of libsvm which has shape (n_samples, n_classes * (n_classes - 1) / 2) The default of None will currently behave as 'ovo' for backward compatibility and raise a deprecation warning, but will change 'ovr' in 0.19 .. versionadded:: 0.17 *decision_function_shape='ovr'* is recommended .. versionchanged:: 0.17 Deprecated *decision_function_shape='ovo' and None* | default: null |
degree | Degree of the polynomial kernel function ('poly') Ignored by all other kernels | default: 3 |
gamma | Kernel coefficient for 'rbf', 'poly' and 'sigmoid' If gamma is 'auto' then 1/n_features will be used instead | default: "auto" |
kernel | Specifies the kernel type to be used in the algorithm It must be one of 'linear', 'poly', 'rbf', 'sigmoid', 'precomputed' or a callable If none is given, 'rbf' will be used. If a callable is given it is used to pre-compute the kernel matrix from data matrices; that matrix should be an array of shape ``(n_samples, n_samples)`` | default: "rbf" |
max_iter | Hard limit on iterations within solver, or -1 for no limit | default: -1 |
probability | Whether to enable probability estimates. This must be enabled prior to calling `fit`, and will slow down that method | default: false |
random_state | The seed of the pseudo random number generator to use when shuffling the data for probability estimation. | default: null |
shrinking | Whether to use the shrinking heuristic | default: true |
tol | Tolerance for stopping criterion | default: 0.001 |
verbose | Enable verbose output. Note that this setting takes advantage of a per-process runtime setting in libsvm that, if enabled, may not work properly in a multithreaded context | default: false |