DEVELOPMENT... OpenML
Flow
weka.Decorate

weka.Decorate

Visibility: public Uploaded 18-02-2015 by Felicia West Weka_3.7.12 0 runs
0 likes downloaded by 1 people 0 issues 0 downvotes , 1 total downloads
  • study_1 study_41 Verified_Learning_Curve,Verified_Supervised_Classification weka weka_3.7.12
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
P. Melville, R. J. Mooney: Constructing Diverse Classifier Ensembles Using Artificial Training Examples. In: Eighteenth International Joint Conference on Artificial Intelligence, 505-510, 2003. P. Melville, R. J. Mooney (2004). Creating Diversity in Ensembles Using Artificial Data. Information Fusion: Special Issue on Diversity in Multiclassifier Systems..

Parameters

-do-not-check-capabilitiesIf set, classifier capabilities are not checked before classifier is built (use with caution).
-doNotMakeSplitPointActualValueDo not make split point actual value.
ALaplace smoothing for predicted probabilities.
BUse binary splits only.
CSet confidence threshold for pruning. (default 0.25)
EDesired size of ensemble. (default 10)default: 15
INumber of iterations. (default 10)default: 50
JDo not use MDL correction for info gain on numeric attributes.
LDo not clean up after the tree has been built.
MSet minimum number of instances per leaf. (default 2)
NSet number of folds for reduced error pruning. One fold is used as pruning set. (default 3)
ODo not collapse tree.
QSeed for random data shuffling (default 1).
RFactor that determines number of artificial examples to generate. Specified proportional to training set size. (default 1.0)default: 1.0
SRandom number seed. (default 1)default: 1
UUse unpruned tree.
output-debug-infoIf set, classifier is run in debug mode and may output additional info to the console

0
Runs

List all runs
Parameter:
Rendering chart
Rendering table