DEVELOPMENT... OpenML
Data
mfeat-zernike

mfeat-zernike

active ARFF Publicly available Visibility: public Uploaded 04-10-2014 by Felicia West
0 likes downloaded by 8 people , 9 total downloads 0 issues 0 downvotes
  • mythbusting_1 study_1 study_15 study_20 study_41 study_7 study_236 study_388 study_388 study_388
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Author: Source: Unknown - Date unknown Please cite: Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and all others as negative ('N'). Originally converted by Quan Sun.

48 features

binaryClass (target)nominal2 unique values
0 missing
att26numeric1984 unique values
0 missing
att25numeric1918 unique values
0 missing
att27numeric1991 unique values
0 missing
att28numeric1992 unique values
0 missing
att29numeric1994 unique values
0 missing
att30numeric1938 unique values
0 missing
att31numeric1988 unique values
0 missing
att32numeric1994 unique values
0 missing
att33numeric1994 unique values
0 missing
att34numeric1963 unique values
0 missing
att35numeric1989 unique values
0 missing
att36numeric1993 unique values
0 missing
att37numeric1992 unique values
0 missing
att38numeric1978 unique values
0 missing
att39numeric1993 unique values
0 missing
att40numeric1994 unique values
0 missing
att41numeric1962 unique values
0 missing
att42numeric1994 unique values
0 missing
att43numeric1993 unique values
0 missing
att44numeric1993 unique values
0 missing
att45numeric1992 unique values
0 missing
att46numeric1992 unique values
0 missing
att47numeric1989 unique values
0 missing
att13numeric1994 unique values
0 missing
att2numeric1958 unique values
0 missing
att3numeric1990 unique values
0 missing
att4numeric1994 unique values
0 missing
att5numeric1994 unique values
0 missing
att6numeric1994 unique values
0 missing
att7numeric1994 unique values
0 missing
att8numeric1893 unique values
0 missing
att9numeric1975 unique values
0 missing
att10numeric1990 unique values
0 missing
att11numeric1993 unique values
0 missing
att12numeric1994 unique values
0 missing
att1numeric1885 unique values
0 missing
att14numeric1897 unique values
0 missing
att15numeric1978 unique values
0 missing
att16numeric1991 unique values
0 missing
att17numeric1992 unique values
0 missing
att18numeric1994 unique values
0 missing
att19numeric1992 unique values
0 missing
att20numeric1907 unique values
0 missing
att21numeric1981 unique values
0 missing
att22numeric1989 unique values
0 missing
att23numeric1994 unique values
0 missing
att24numeric1994 unique values
0 missing

107 properties

2000
Number of instances (rows) of the dataset.
48
Number of attributes (columns) of the dataset.
2
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
47
Number of numeric attributes.
1
Number of nominal attributes.
1
Average class difference between consecutive instances.
0.96
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.02
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.92
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.96
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.02
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.92
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.96
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.02
Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.92
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.47
Entropy of the target attribute values.
0.94
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump
0.02
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump
0.88
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump
0.02
Number of attributes divided by the number of instances.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.94
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0.01
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0.92
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0.94
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.01
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.92
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.94
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .001
0.01
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .001
0.92
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .001
90
Percentage of instances belonging to the most frequent class.
1800
Number of instances belonging to the most frequent class.
Maximum entropy among attributes.
4.37
Maximum kurtosis among attributes of the numeric type.
508.9
Maximum of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
2
The maximum number of distinct values among attributes of the nominal type.
1.79
Maximum skewness among attributes of the numeric type.
124.19
Maximum standard deviation of attributes of the numeric type.
Average entropy of the attributes.
0.74
Mean kurtosis among attributes of the numeric type.
88.64
Mean of means among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
2
Average number of distinct values among the attributes of the nominal type.
0.79
Mean skewness among attributes of the numeric type.
40.13
Mean standard deviation of attributes of the numeric type.
Minimal entropy among attributes.
-0.99
Minimum kurtosis among attributes of the numeric type.
0.08
Minimum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
2
The minimal number of distinct values among attributes of the nominal type.
0.01
Minimum skewness among attributes of the numeric type.
0.07
Minimum standard deviation of attributes of the numeric type.
10
Percentage of instances belonging to the least frequent class.
200
Number of instances belonging to the least frequent class.
0.98
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.07
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.69
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes
1
Number of binary attributes.
2.08
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
97.92
Percentage of numeric attributes.
2.08
Percentage of nominal attributes.
First quartile of entropy among attributes.
-0.46
First quartile of kurtosis among attributes of the numeric type.
7.54
First quartile of means among attributes of the numeric type.
First quartile of mutual information between the nominal attributes and the target attribute.
0.38
First quartile of skewness among attributes of the numeric type.
3.76
First quartile of standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
0.44
Second quartile (Median) of kurtosis among attributes of the numeric type.
69.88
Second quartile (Median) of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
0.74
Second quartile (Median) of skewness among attributes of the numeric type.
37.88
Second quartile (Median) of standard deviation of attributes of the numeric type.
Third quartile of entropy among attributes.
1.87
Third quartile of kurtosis among attributes of the numeric type.
126.83
Third quartile of means among attributes of the numeric type.
Third quartile of mutual information between the nominal attributes and the target attribute.
1.25
Third quartile of skewness among attributes of the numeric type.
65.21
Third quartile of standard deviation of attributes of the numeric type.
0.97
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.02
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.91
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.97
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.02
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.91
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.97
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.02
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.91
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.92
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.03
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.84
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.92
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.03
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.84
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.92
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.03
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.84
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0
Standard deviation of the number of distinct values among attributes of the nominal type.
0.98
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk
0.01
Error rate achieved by the landmarker weka.classifiers.lazy.IBk
0.97
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk

15 tasks

581 runs - estimation_procedure: 10-fold Crossvalidation - evaluation_measure: predictive_accuracy - target_feature: binaryClass
211 runs - estimation_procedure: 10 times 10-fold Crossvalidation - evaluation_measure: predictive_accuracy - target_feature: binaryClass
0 runs - estimation_procedure: 33% Holdout set - evaluation_measure: predictive_accuracy - target_feature: binaryClass
0 runs - estimation_procedure: Interleaved Test then Train - target_feature: binaryClass
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task

A PHP Error was encountered

Severity: Core Warning

Message: Module 'mysqli' already loaded

Filename: Unknown

Line Number: 0

Backtrace: