DEVELOPMENT... OpenML
Data
analcatdata_authorship

analcatdata_authorship

active ARFF Publicly available Visibility: public Uploaded 04-10-2014 by Felicia West
0 likes downloaded by 8 people , 8 total downloads 0 issues 0 downvotes
  • mythbusting_1 study_1 study_15 study_20 study_41 study_7 study_236
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Author: Source: Unknown - Date unknown Please cite: Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and all others as negative ('N'). Originally converted by Quan Sun.

71 features

binaryClass (target)nominal2 unique values
0 missing
thennumeric13 unique values
0 missing
notnumeric37 unique values
0 missing
theirnumeric26 unique values
0 missing
thenumeric137 unique values
0 missing
thatnumeric38 unique values
0 missing
thannumeric14 unique values
0 missing
suchnumeric14 unique values
0 missing
somenumeric13 unique values
0 missing
sonumeric24 unique values
0 missing
shouldnumeric14 unique values
0 missing
ournumeric30 unique values
0 missing
ornumeric29 unique values
0 missing
onlynumeric11 unique values
0 missing
onenumeric18 unique values
0 missing
onnumeric26 unique values
0 missing
ofnumeric76 unique values
0 missing
nownumeric16 unique values
0 missing
nonumeric23 unique values
0 missing
whatnumeric21 unique values
0 missing
BookIDnumeric12 unique values
0 missing
yournumeric31 unique values
0 missing
wouldnumeric23 unique values
0 missing
withnumeric36 unique values
0 missing
willnumeric25 unique values
0 missing
whonumeric16 unique values
0 missing
whichnumeric20 unique values
0 missing
whennumeric16 unique values
0 missing
therenumeric16 unique values
0 missing
werenumeric31 unique values
0 missing
wasnumeric64 unique values
0 missing
uponnumeric11 unique values
0 missing
upnumeric14 unique values
0 missing
tonumeric63 unique values
0 missing
thisnumeric27 unique values
0 missing
thingsnumeric10 unique values
0 missing
benumeric39 unique values
0 missing
everynumeric12 unique values
0 missing
evennumeric9 unique values
0 missing
downnumeric13 unique values
0 missing
donumeric22 unique values
0 missing
cannumeric12 unique values
0 missing
bynumeric21 unique values
0 missing
butnumeric25 unique values
0 missing
beennumeric24 unique values
0 missing
fornumeric27 unique values
0 missing
atnumeric22 unique values
0 missing
asnumeric31 unique values
0 missing
arenumeric21 unique values
0 missing
anynumeric16 unique values
0 missing
andnumeric83 unique values
0 missing
annumeric50 unique values
0 missing
alsonumeric6 unique values
0 missing
allnumeric27 unique values
0 missing
innumeric45 unique values
0 missing
mynumeric51 unique values
0 missing
mustnumeric16 unique values
0 missing
morenumeric15 unique values
0 missing
maynumeric11 unique values
0 missing
itsnumeric12 unique values
0 missing
itnumeric49 unique values
0 missing
isnumeric40 unique values
0 missing
intonumeric15 unique values
0 missing
anumeric57 unique values
0 missing
ifnumeric18 unique values
0 missing
hisnumeric54 unique values
0 missing
hernumeric66 unique values
0 missing
havenumeric31 unique values
0 missing
hasnumeric15 unique values
0 missing
hadnumeric45 unique values
0 missing
fromnumeric25 unique values
0 missing

107 properties

841
Number of instances (rows) of the dataset.
71
Number of attributes (columns) of the dataset.
2
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
70
Number of numeric attributes.
1
Number of nominal attributes.
1
Average class difference between consecutive instances.
0.93
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.06
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.87
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.93
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.06
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.87
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.93
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.06
Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.87
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.96
Entropy of the target attribute values.
0.86
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump
0.14
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump
0.7
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump
0.08
Number of attributes divided by the number of instances.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.92
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0.07
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0.85
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0.92
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.07
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.85
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.92
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .001
0.07
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .001
0.85
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .001
62.31
Percentage of instances belonging to the most frequent class.
524
Number of instances belonging to the most frequent class.
Maximum entropy among attributes.
21.23
Maximum kurtosis among attributes of the numeric type.
77.36
Maximum of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
2
The maximum number of distinct values among attributes of the nominal type.
4.09
Maximum skewness among attributes of the numeric type.
31.07
Maximum standard deviation of attributes of the numeric type.
Average entropy of the attributes.
2.36
Mean kurtosis among attributes of the numeric type.
10.13
Mean of means among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
2
Average number of distinct values among the attributes of the nominal type.
1.11
Mean skewness among attributes of the numeric type.
5.36
Mean standard deviation of attributes of the numeric type.
Minimal entropy among attributes.
-0.79
Minimum kurtosis among attributes of the numeric type.
0.44
Minimum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
2
The minimal number of distinct values among attributes of the nominal type.
-0.04
Minimum skewness among attributes of the numeric type.
0.8
Minimum standard deviation of attributes of the numeric type.
37.69
Percentage of instances belonging to the least frequent class.
317
Number of instances belonging to the least frequent class.
0.99
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.01
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.97
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes
1
Number of binary attributes.
1.41
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
98.59
Percentage of numeric attributes.
1.41
Percentage of nominal attributes.
First quartile of entropy among attributes.
0.36
First quartile of kurtosis among attributes of the numeric type.
3.13
First quartile of means among attributes of the numeric type.
First quartile of mutual information between the nominal attributes and the target attribute.
0.7
First quartile of skewness among attributes of the numeric type.
2.52
First quartile of standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
1.41
Second quartile (Median) of kurtosis among attributes of the numeric type.
5.03
Second quartile (Median) of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
1.03
Second quartile (Median) of skewness among attributes of the numeric type.
3.9
Second quartile (Median) of standard deviation of attributes of the numeric type.
Third quartile of entropy among attributes.
2.44
Third quartile of kurtosis among attributes of the numeric type.
11.94
Third quartile of means among attributes of the numeric type.
Third quartile of mutual information between the nominal attributes and the target attribute.
1.34
Third quartile of skewness among attributes of the numeric type.
6.21
Third quartile of standard deviation of attributes of the numeric type.
0.92
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.08
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.84
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.92
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.08
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.84
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.92
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.08
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.84
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.89
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.09
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.8
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.89
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.09
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.8
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.89
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.09
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.8
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0
Standard deviation of the number of distinct values among attributes of the nominal type.
0.99
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk
0.01
Error rate achieved by the landmarker weka.classifiers.lazy.IBk
0.98
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk

15 tasks

582 runs - estimation_procedure: 10-fold Crossvalidation - evaluation_measure: predictive_accuracy - target_feature: binaryClass
219 runs - estimation_procedure: 10 times 10-fold Crossvalidation - evaluation_measure: predictive_accuracy - target_feature: binaryClass
0 runs - estimation_procedure: 33% Holdout set - target_feature: binaryClass
0 runs - estimation_procedure: Interleaved Test then Train - target_feature: binaryClass
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task