DEVELOPMENT... OpenML
Data
pbc

pbc

active ARFF Publicly available Visibility: public Uploaded 04-10-2014 by Felicia West
0 likes downloaded by 5 people , 5 total downloads 0 issues 0 downvotes
  • binarized mythbusting_1 study_1 study_123 study_15 study_20 study_41
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Author: Source: Unknown - Date unknown Please cite: Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a lower target value as positive ('P') and all others as negative ('N').

19 features

binaryClass (target)nominal2 unique values
0 missing
Z9numeric201 unique values
134 missing
Z17nominal4 unique values
106 missing
Z16numeric48 unique values
2 missing
Z15numeric243 unique values
11 missing
Z14numeric146 unique values
136 missing
Z13numeric179 unique values
106 missing
Z12numeric295 unique values
106 missing
Z11numeric158 unique values
108 missing
Z10numeric154 unique values
0 missing
Dnominal2 unique values
0 missing
Z8numeric98 unique values
0 missing
Z7nominal3 unique values
0 missing
Z6nominal2 unique values
106 missing
Z5nominal2 unique values
106 missing
Z4nominal2 unique values
106 missing
Z3nominal2 unique values
106 missing
Z2numeric345 unique values
0 missing
Z1nominal2 unique values
106 missing

107 properties

418
Number of instances (rows) of the dataset.
19
Number of attributes (columns) of the dataset.
2
Number of distinct values of the target attribute (if it is nominal).
1239
Number of missing values in the dataset.
142
Number of instances with at least one value missing.
10
Number of numeric attributes.
9
Number of nominal attributes.
0.63
Average class difference between consecutive instances.
0.69
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.33
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.33
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.69
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.33
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.33
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.69
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.33
Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.33
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.99
Entropy of the target attribute values.
0.63
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump
0.39
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump
0.22
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump
0.05
Number of attributes divided by the number of instances.
27.94
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.68
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0.34
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0.3
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0.68
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.34
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.3
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.68
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .001
0.34
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .001
0.3
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .001
55.02
Percentage of instances belonging to the most frequent class.
230
Number of instances belonging to the most frequent class.
1.61
Maximum entropy among attributes.
14.34
Maximum kurtosis among attributes of the numeric type.
1982.66
Maximum of means among attributes of the numeric type.
0.06
Maximum mutual information between the nominal attributes and the target attribute.
4
The maximum number of distinct values among attributes of the nominal type.
3.41
Maximum skewness among attributes of the numeric type.
2140.39
Maximum standard deviation of attributes of the numeric type.
0.94
Average entropy of the attributes.
6.67
Mean kurtosis among attributes of the numeric type.
302.23
Mean of means among attributes of the numeric type.
0.04
Average mutual information between the nominal attributes and the target attribute.
25.53
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
2.33
Average number of distinct values among the attributes of the nominal type.
1.79
Mean skewness among attributes of the numeric type.
269.44
Mean standard deviation of attributes of the numeric type.
0.42
Minimal entropy among attributes.
-0.62
Minimum kurtosis among attributes of the numeric type.
3.22
Minimum of means among attributes of the numeric type.
0
Minimal mutual information between the nominal attributes and the target attribute.
2
The minimal number of distinct values among attributes of the nominal type.
-0.47
Minimum skewness among attributes of the numeric type.
0.42
Minimum standard deviation of attributes of the numeric type.
44.98
Percentage of instances belonging to the least frequent class.
188
Number of instances belonging to the least frequent class.
0.76
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.33
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.35
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes
7
Number of binary attributes.
36.84
Percentage of binary attributes.
33.97
Percentage of instances having missing values.
15.6
Percentage of missing values.
52.63
Percentage of numeric attributes.
47.37
Percentage of nominal attributes.
0.79
First quartile of entropy among attributes.
0.79
First quartile of kurtosis among attributes of the numeric type.
8.92
First quartile of means among attributes of the numeric type.
0.01
First quartile of mutual information between the nominal attributes and the target attribute.
0.49
First quartile of skewness among attributes of the numeric type.
3.56
First quartile of standard deviation of attributes of the numeric type.
0.95
Second quartile (Median) of entropy among attributes.
7.84
Second quartile (Median) of kurtosis among attributes of the numeric type.
110.1
Second quartile (Median) of means among attributes of the numeric type.
0.04
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
2.26
Second quartile (Median) of skewness among attributes of the numeric type.
60.92
Second quartile (Median) of standard deviation of attributes of the numeric type.
0.99
Third quartile of entropy among attributes.
10.48
Third quartile of kurtosis among attributes of the numeric type.
285.15
Third quartile of means among attributes of the numeric type.
0.06
Third quartile of mutual information between the nominal attributes and the target attribute.
2.79
Third quartile of skewness among attributes of the numeric type.
131.73
Third quartile of standard deviation of attributes of the numeric type.
0.7
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.33
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.35
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.7
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.33
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.35
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.7
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.33
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.35
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.63
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.38
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.22
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.63
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.38
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.22
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.63
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.38
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.22
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.71
Standard deviation of the number of distinct values among attributes of the nominal type.
0.58
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk
0.4
Error rate achieved by the landmarker weka.classifiers.lazy.IBk
0.17
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk

15 tasks

508 runs - estimation_procedure: 10-fold Crossvalidation - evaluation_measure: predictive_accuracy - target_feature: binaryClass
215 runs - estimation_procedure: 10 times 10-fold Crossvalidation - evaluation_measure: predictive_accuracy - target_feature: binaryClass
0 runs - estimation_procedure: 33% Holdout set - target_feature: binaryClass
0 runs - estimation_procedure: Interleaved Test then Train - target_feature: binaryClass
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task