DEVELOPMENT... OpenML
Data
fri_c2_100_25

fri_c2_100_25

active ARFF Publicly available Visibility: public Uploaded 04-10-2014 by Felicia West
0 likes downloaded by 7 people , 8 total downloads 0 issues 0 downvotes
  • mythbusting_1 study_1 study_15 study_20 study_41 study_7 study_88 study_236
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Author: Source: Unknown - Date unknown Please cite: Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a lower target value as positive ('P') and all others as negative ('N').

26 features

binaryClass (target)nominal2 unique values
0 missing
oz14numeric100 unique values
0 missing
oz25numeric100 unique values
0 missing
oz24numeric100 unique values
0 missing
oz23numeric100 unique values
0 missing
oz22numeric100 unique values
0 missing
oz21numeric100 unique values
0 missing
oz20numeric100 unique values
0 missing
oz19numeric100 unique values
0 missing
oz18numeric100 unique values
0 missing
oz17numeric100 unique values
0 missing
oz16numeric100 unique values
0 missing
oz15numeric100 unique values
0 missing
oz1numeric100 unique values
0 missing
oz13numeric100 unique values
0 missing
oz12numeric100 unique values
0 missing
oz11numeric100 unique values
0 missing
oz10numeric100 unique values
0 missing
oz9numeric100 unique values
0 missing
oz8numeric100 unique values
0 missing
oz7numeric100 unique values
0 missing
oz6numeric100 unique values
0 missing
oz5numeric100 unique values
0 missing
oz4numeric100 unique values
0 missing
oz3numeric100 unique values
0 missing
oz2numeric100 unique values
0 missing

107 properties

100
Number of instances (rows) of the dataset.
26
Number of attributes (columns) of the dataset.
2
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
25
Number of numeric attributes.
1
Number of nominal attributes.
0.42
Average class difference between consecutive instances.
0.84
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.21
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.58
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.84
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.21
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.58
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.84
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.21
Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.58
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.99
Entropy of the target attribute values.
0.81
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump
0.17
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump
0.65
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump
0.26
Number of attributes divided by the number of instances.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.82
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0.2
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0.59
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0.82
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.2
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.59
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.82
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .001
0.2
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .001
0.59
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .001
57
Percentage of instances belonging to the most frequent class.
57
Number of instances belonging to the most frequent class.
Maximum entropy among attributes.
-0.38
Maximum kurtosis among attributes of the numeric type.
0
Maximum of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
2
The maximum number of distinct values among attributes of the nominal type.
0.59
Maximum skewness among attributes of the numeric type.
1
Maximum standard deviation of attributes of the numeric type.
Average entropy of the attributes.
-1.13
Mean kurtosis among attributes of the numeric type.
0
Mean of means among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
2
Average number of distinct values among the attributes of the nominal type.
0
Mean skewness among attributes of the numeric type.
1
Mean standard deviation of attributes of the numeric type.
Minimal entropy among attributes.
-1.41
Minimum kurtosis among attributes of the numeric type.
-0
Minimum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
2
The minimal number of distinct values among attributes of the nominal type.
-0.35
Minimum skewness among attributes of the numeric type.
1
Minimum standard deviation of attributes of the numeric type.
43
Percentage of instances belonging to the least frequent class.
43
Number of instances belonging to the least frequent class.
0.76
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.25
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.49
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes
1
Number of binary attributes.
3.85
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
96.15
Percentage of numeric attributes.
3.85
Percentage of nominal attributes.
First quartile of entropy among attributes.
-1.28
First quartile of kurtosis among attributes of the numeric type.
-0
First quartile of means among attributes of the numeric type.
First quartile of mutual information between the nominal attributes and the target attribute.
-0.06
First quartile of skewness among attributes of the numeric type.
1
First quartile of standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
-1.18
Second quartile (Median) of kurtosis among attributes of the numeric type.
0
Second quartile (Median) of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
0.01
Second quartile (Median) of skewness among attributes of the numeric type.
1
Second quartile (Median) of standard deviation of attributes of the numeric type.
Third quartile of entropy among attributes.
-1.07
Third quartile of kurtosis among attributes of the numeric type.
0
Third quartile of means among attributes of the numeric type.
Third quartile of mutual information between the nominal attributes and the target attribute.
0.06
Third quartile of skewness among attributes of the numeric type.
1
Third quartile of standard deviation of attributes of the numeric type.
0.73
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.31
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.34
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.73
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.31
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.34
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.73
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.31
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.34
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.71
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.29
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.41
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.71
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.29
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.41
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.71
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.29
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.41
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0
Standard deviation of the number of distinct values among attributes of the nominal type.
0.62
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk
0.38
Error rate achieved by the landmarker weka.classifiers.lazy.IBk
0.24
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk

14 tasks

564 runs - estimation_procedure: 10-fold Crossvalidation - evaluation_measure: predictive_accuracy - target_feature: binaryClass
225 runs - estimation_procedure: 10 times 10-fold Crossvalidation - evaluation_measure: predictive_accuracy - target_feature: binaryClass
0 runs - estimation_procedure: Interleaved Test then Train - target_feature: binaryClass
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task