DEVELOPMENT... OpenML
Data
puma32H

puma32H

active ARFF Publicly available Visibility: public Uploaded 04-10-2014 by Felicia West
0 likes downloaded by 13 people , 13 total downloads 0 issues 0 downvotes
  • binarized_regression_problem mythbusting_1 study_1 study_15 study_20 study_41 study_7 study_293
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Author: Source: Unknown - Date unknown Please cite: Binarized version of the original data set (see version 1). It converts the numeric target feature to a two-class nominal target feature by computing the mean and classifying all instances with a lower target value as positive ('P') and all others as negative ('N').

33 features

binaryClass (target)nominal2 unique values
0 missing
dm1numeric8181 unique values
0 missing
tau5numeric8192 unique values
0 missing
dm2numeric8180 unique values
0 missing
dm3numeric8178 unique values
0 missing
dm4numeric8187 unique values
0 missing
dm5numeric8173 unique values
0 missing
da1numeric8176 unique values
0 missing
da2numeric8173 unique values
0 missing
da3numeric8179 unique values
0 missing
da4numeric8179 unique values
0 missing
da5numeric8181 unique values
0 missing
db1numeric8180 unique values
0 missing
db2numeric8175 unique values
0 missing
db3numeric8176 unique values
0 missing
db4numeric8176 unique values
0 missing
db5numeric8173 unique values
0 missing
theta1numeric8188 unique values
0 missing
tau4numeric8192 unique values
0 missing
tau3numeric8192 unique values
0 missing
tau2numeric8192 unique values
0 missing
tau1numeric8192 unique values
0 missing
thetad6numeric8188 unique values
0 missing
thetad5numeric8183 unique values
0 missing
thetad4numeric8183 unique values
0 missing
thetad3numeric8186 unique values
0 missing
thetad2numeric8187 unique values
0 missing
thetad1numeric8184 unique values
0 missing
theta6numeric8180 unique values
0 missing
theta5numeric8178 unique values
0 missing
theta4numeric8185 unique values
0 missing
theta3numeric8186 unique values
0 missing
theta2numeric8186 unique values
0 missing

107 properties

8192
Number of instances (rows) of the dataset.
33
Number of attributes (columns) of the dataset.
2
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
32
Number of numeric attributes.
1
Number of nominal attributes.
0.5
Average class difference between consecutive instances.
0.65
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.34
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.31
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.65
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.34
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.31
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.65
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.34
Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.31
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
1
Entropy of the target attribute values.
0.65
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump
0.34
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump
0.31
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump
0
Number of attributes divided by the number of instances.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.87
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0.13
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0.73
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0.87
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.13
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.73
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.87
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .001
0.13
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .001
0.73
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .001
50.39
Percentage of instances belonging to the most frequent class.
4128
Number of instances belonging to the most frequent class.
Maximum entropy among attributes.
-1.16
Maximum kurtosis among attributes of the numeric type.
1.39
Maximum of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
2
The maximum number of distinct values among attributes of the nominal type.
0.03
Maximum skewness among attributes of the numeric type.
43.75
Maximum standard deviation of attributes of the numeric type.
Average entropy of the attributes.
-1.2
Mean kurtosis among attributes of the numeric type.
0.66
Mean of means among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
2
Average number of distinct values among the attributes of the nominal type.
-0
Mean skewness among attributes of the numeric type.
7.59
Mean standard deviation of attributes of the numeric type.
Minimal entropy among attributes.
-1.23
Minimum kurtosis among attributes of the numeric type.
-0.53
Minimum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
2
The minimal number of distinct values among attributes of the nominal type.
-0.03
Minimum skewness among attributes of the numeric type.
0.65
Minimum standard deviation of attributes of the numeric type.
49.61
Percentage of instances belonging to the least frequent class.
4064
Number of instances belonging to the least frequent class.
0.66
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.36
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.28
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes
1
Number of binary attributes.
3.03
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
96.97
Percentage of numeric attributes.
3.03
Percentage of nominal attributes.
First quartile of entropy among attributes.
-1.21
First quartile of kurtosis among attributes of the numeric type.
0
First quartile of means among attributes of the numeric type.
First quartile of mutual information between the nominal attributes and the target attribute.
-0.01
First quartile of skewness among attributes of the numeric type.
0.65
First quartile of standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
-1.2
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.29
Second quartile (Median) of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
-0
Second quartile (Median) of skewness among attributes of the numeric type.
1.35
Second quartile (Median) of standard deviation of attributes of the numeric type.
Third quartile of entropy among attributes.
-1.19
Third quartile of kurtosis among attributes of the numeric type.
1.38
Third quartile of means among attributes of the numeric type.
Third quartile of mutual information between the nominal attributes and the target attribute.
0
Third quartile of skewness among attributes of the numeric type.
1.36
Third quartile of standard deviation of attributes of the numeric type.
0.92
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.13
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.75
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.92
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.13
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.75
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.92
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.13
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.75
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.77
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.23
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.54
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.77
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.23
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.54
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.77
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.23
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.54
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0
Standard deviation of the number of distinct values among attributes of the nominal type.
0.56
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk
0.44
Error rate achieved by the landmarker weka.classifiers.lazy.IBk
0.12
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk

15 tasks

556 runs - estimation_procedure: 10-fold Crossvalidation - evaluation_measure: predictive_accuracy - target_feature: binaryClass
206 runs - estimation_procedure: 10 times 10-fold Crossvalidation - evaluation_measure: predictive_accuracy - target_feature: binaryClass
0 runs - estimation_procedure: 33% Holdout set - evaluation_measure: predictive_accuracy - target_feature: binaryClass
0 runs - estimation_procedure: Interleaved Test then Train - target_feature: binaryClass
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task