DEVELOPMENT... OpenML
Data
disclosure_x_noise

disclosure_x_noise

active ARFF Publicly available Visibility: public Uploaded 04-10-2014 by unknown
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Author: Source: Unknown - Date unknown Please cite: Data Used in "A BAYESIAN APPROACH TO DATA DISCLOSURE: OPTIMAL INTRUDER BEHAVIOR FOR CONTINUOUS DATA" by Stephen E. Fienberg, Udi E. Makov, and Ashish P. Sanil Background: ========== In this paper we develop an approach to data disclosure in survey settings by adopting a probabilistic definition of disclosure due to Dalenius. Our approach is based on the principle that a data collection agency must consider disclosure from the perspective of an intruder in order to efficiently evaluate data disclosure limitation procedures. The probabilistic definition and our attempt to study optimal intruder behavior lead naturally to a Bayesian formulation. We apply the methods in a small-scale simulation study using data adapted from an actual survey conducted by the Institute for Social Research at York University. (See Sections 1-3 of the paper for details oF the model formulation and related issues.) The Data: ======== Our case study uses data from the survey data Elite Canadian Decision-Makers collected by the Institute for Social Research at York University. This survey was conducted in 1981 using telephone interviews and there were 1348 respondents, but many of these did not supply complete data. We have extracted data on 12 variables, each of which was measured on a 5-point scale: Civil-liberties: - --------------- C1 - Free speech is just not worth it. C2 - We have gone too far in pushing equal rights in this country. C3 - It is better to live in an orderly society than to allow people so much freedom. C5 - Free speech ought to be allowed for all political groups. Attitudes towards Jews: - ---------------------- A15 - Most Jews don't care what happens to people who are not Jews. A18 - Jews are more willing than others to use shady practices to get ahead. Canada-US relationship: - ---------------------- CUS1 - Ensure independent Canada. CUS5 - Canada should have free trade with the USA. CUS6 - Canada's way of life is influenced strongly by USA. CUS7 - Canada benefits from US investments. In addition, we have data on two approximately continuous variables: Personal information: - -------------------- Income - Total family income before taxes (with top-coding at \$80,000). Age - Based on year of birth. We transformed the original survey data as follows in order to create a database of approximately continuous variables: [A] We add categorical variables (all but income) to increase the number of levels. (When necessary we reversed the order of levels of a response to a question.) The new variables are defined as follows: Civil = C1 + C2 + C3 + (8 - C5) Attitude = A15 + A18 Can/US = (5 - CUS1) + CUS5 + (5 - CUS6) + CUS7 After we removed cases with missing observations and two cases involving young children, we had a data-base consisting of 662 observations. [B] In order to enhance continuity, we took the following measures: Age: We added normal distributed variates, with 0 mean and variance 4 to all observations. Income: We added uniform variates on the range of $0 - $10,000 to all incomes below $80,000. Since all cases of incomes exceeding $80,000 were lumped together in the survey, we simulated their values by means of a t(8) distribution. Drawing values from the upper 38% tail of t(8), we evaluated the values of income as $60,000 + 25,000*t(8). Other variables: We added normal distributed variates, with 0 mean and variance 0.5 to the variables. We assume that the agency releases information about all variables, except for Attitudes (towards Jews), which is unavailable to the intruder and is at the center of the intruder's investigation. We denote the released data by Z = (( z(i,j) )) with i=1,..,662; j=1,2,3,4. We assume that the intruder's data, X, are accurate and are related to Z via the following transformation: x(0,j) = z(i,j)*theta(i,j) + xi(j), where theta(i,j) is a bias removing parameter normally distributed with mean 1 and variance v(j), and xi(j) is normally distributed disturbance with 0 mean and variance sigma2(j). The following table provides the values of v(j), sigma2(j) used in the study: v(j) sigma2(j) Civil 0.1732 25 Can/US 0.1732 25 Age 0.1732 9 Income (in $10000's) 0.1732 4 We first generated several realizations of the above transformation on small subsets of the data to ascertain the impact of the process of the error on the data. In Table 4-1 in the paper we present 10 records the the intruder's accurate data, X, and the biased and corrupted released data, Z, which we obtained from one realization of the transformation. Section 4.2 of the paper contains details of the implementation of our Bayesian model. Data Used in the Computations: ============================= We conducted a complete simulation of the procedures for the complete set of 662 cases. We considered four different scenarios for the simulation. (The names of datasets used in each of the scenarios appear in brackets below. The datasets are appended to this text.) * The released data contains no bias or noise (i.e. v(j)=0 and sigma2(j)=0 for all j). [Z.DATA] * The released data contains only noise (i.e., v(j)=0 for all j and and $sigma2(j)$ as given in the above Table). [X_NOISE.DATA] * The released data contains only bias (i.e., sigma2(j)=0 for all j and v(j) as given in the above Table). [X_BIAS.DATA] * The released data contains both bias and noise (i.e., v(j) and sigma2(j) as given in the above Table). [X_TAMPERED.DATA] We took each individual in turn as the object of the intruder's efforts and carried out the calculations. Structure of the Datasets: - ------------------------- Each attached dataset consists of four space-separated columns containing the data on Age, Civil, Can/US and Income ($) respectively. Dataset: X_NOISE Information about the dataset CLASSTYPE: numeric CLASSINDEX: none specific

4 features

Income (target)numeric662 unique values
0 missing
Agenumeric662 unique values
0 missing
Civilnumeric662 unique values
0 missing
Can/USnumeric662 unique values
0 missing

107 properties

662
Number of instances (rows) of the dataset.
4
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
4
Number of numeric attributes.
0
Number of nominal attributes.
-31980.07
Average class difference between consecutive instances.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Entropy of the target attribute values.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump
0.01
Number of attributes divided by the number of instances.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .00001
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .00001
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .0001
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .0001
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .001
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .001
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .001
Percentage of instances belonging to the most frequent class.
Number of instances belonging to the most frequent class.
Maximum entropy among attributes.
0.85
Maximum kurtosis among attributes of the numeric type.
72812.15
Maximum of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
0.29
Maximum skewness among attributes of the numeric type.
29961.28
Maximum standard deviation of attributes of the numeric type.
Average entropy of the attributes.
0.25
Mean kurtosis among attributes of the numeric type.
18220.65
Mean of means among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Average number of distinct values among the attributes of the nominal type.
0.14
Mean skewness among attributes of the numeric type.
7497.03
Mean standard deviation of attributes of the numeric type.
Minimal entropy among attributes.
-0.06
Minimum kurtosis among attributes of the numeric type.
9.89
Minimum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
-0.18
Minimum skewness among attributes of the numeric type.
4.26
Minimum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
Number of instances belonging to the least frequent class.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0
Number of binary attributes.
0
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
100
Percentage of numeric attributes.
0
Percentage of nominal attributes.
First quartile of entropy among attributes.
-0.02
First quartile of kurtosis among attributes of the numeric type.
11.97
First quartile of means among attributes of the numeric type.
First quartile of mutual information between the nominal attributes and the target attribute.
-0.08
First quartile of skewness among attributes of the numeric type.
4.91
First quartile of standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
0.11
Second quartile (Median) of kurtosis among attributes of the numeric type.
30.29
Second quartile (Median) of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
0.23
Second quartile (Median) of skewness among attributes of the numeric type.
11.29
Second quartile (Median) of standard deviation of attributes of the numeric type.
Third quartile of entropy among attributes.
0.67
Third quartile of kurtosis among attributes of the numeric type.
54619.7
Third quartile of means among attributes of the numeric type.
Third quartile of mutual information between the nominal attributes and the target attribute.
0.28
Third quartile of skewness among attributes of the numeric type.
22474.89
Third quartile of standard deviation of attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 1
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 1
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 2
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 2
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
Standard deviation of the number of distinct values among attributes of the nominal type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk
Error rate achieved by the landmarker weka.classifiers.lazy.IBk
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk

14 tasks

0 runs - estimation_procedure: 10-fold Crossvalidation - evaluation_measure: mean_absolute_error - target_feature: Income
0 runs - estimation_procedure: 10 times 10-fold Crossvalidation - evaluation_measure: mean_absolute_error - target_feature: Income
0 runs - estimation_procedure: 33% Holdout set - target_feature: Income
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task