DEVELOPMENT... OpenML
Data
iris

iris

active ARFF Publicly available Visibility: public Uploaded 06-04-2014 by Jason
11 likes downloaded by 162 people , 225 total downloads 0 issues 0 downvotes
  • study_1 study_25 study_4 study_41 study_50 study_52 study_7 study_86 study_88 study_89 uci study_274 study_274 study_274 study_274 study_274 study_274 study_274 study_274 study_283 study_283 study_283 study_283 study_283 study_283 study_283 study_283 study_284 study_284 study_284 study_284 study_284 study_284 study_284 study_284
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Author: R.A. Fisher Source: [UCI](https://archive.ics.uci.edu/ml/datasets/Iris) - 1936 - Donated by Michael Marshall Please cite: Iris Plants Database This is perhaps the best known database to be found in the pattern recognition literature. Fisher's paper is a classic in the field and is referenced frequently to this day. (See Duda & Hart, for example.) The data set contains 3 classes of 50 instances each, where each class refers to a type of iris plant. One class is linearly separable from the other 2; the latter are NOT linearly separable from each other. Predicted attribute: class of iris plant. This is an exceedingly simple domain. ### Attribute Information: 1. sepal length in cm 2. sepal width in cm 3. petal length in cm 4. petal width in cm 5. class: -- Iris Setosa -- Iris Versicolour -- Iris Virginica

5 features

class (target)nominal3 unique values
0 missing
sepallengthnumeric35 unique values
0 missing
sepalwidthnumeric23 unique values
0 missing
petallengthnumeric43 unique values
0 missing
petalwidthnumeric22 unique values
0 missing

107 properties

150
Number of instances (rows) of the dataset.
5
Number of attributes (columns) of the dataset.
3
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
4
Number of numeric attributes.
1
Number of nominal attributes.
0.99
Average class difference between consecutive instances.
0.96
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.07
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.9
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.96
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.07
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.9
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.96
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.07
Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.9
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
1.58
Entropy of the target attribute values.
0.83
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump
0.33
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump
0.5
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump
0.03
Number of attributes divided by the number of instances.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.96
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0.07
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0.9
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0.96
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.07
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.9
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.96
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .001
0.07
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .001
0.9
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .001
33.33
Percentage of instances belonging to the most frequent class.
50
Number of instances belonging to the most frequent class.
Maximum entropy among attributes.
0.29
Maximum kurtosis among attributes of the numeric type.
5.84
Maximum of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
3
The maximum number of distinct values among attributes of the nominal type.
0.33
Maximum skewness among attributes of the numeric type.
1.76
Maximum standard deviation of attributes of the numeric type.
Average entropy of the attributes.
-0.75
Mean kurtosis among attributes of the numeric type.
3.46
Mean of means among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
3
Average number of distinct values among the attributes of the nominal type.
0.07
Mean skewness among attributes of the numeric type.
0.95
Mean standard deviation of attributes of the numeric type.
Minimal entropy among attributes.
-1.4
Minimum kurtosis among attributes of the numeric type.
1.2
Minimum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
3
The minimal number of distinct values among attributes of the nominal type.
-0.27
Minimum skewness among attributes of the numeric type.
0.43
Minimum standard deviation of attributes of the numeric type.
33.33
Percentage of instances belonging to the least frequent class.
50
Number of instances belonging to the least frequent class.
0.99
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.03
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.95
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0
Number of binary attributes.
0
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
80
Percentage of numeric attributes.
20
Percentage of nominal attributes.
First quartile of entropy among attributes.
-1.39
First quartile of kurtosis among attributes of the numeric type.
1.66
First quartile of means among attributes of the numeric type.
First quartile of mutual information between the nominal attributes and the target attribute.
-0.23
First quartile of skewness among attributes of the numeric type.
0.52
First quartile of standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
-0.95
Second quartile (Median) of kurtosis among attributes of the numeric type.
3.41
Second quartile (Median) of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
0.1
Second quartile (Median) of skewness among attributes of the numeric type.
0.8
Second quartile (Median) of standard deviation of attributes of the numeric type.
Third quartile of entropy among attributes.
0.08
Third quartile of kurtosis among attributes of the numeric type.
5.32
Third quartile of means among attributes of the numeric type.
Third quartile of mutual information between the nominal attributes and the target attribute.
0.33
Third quartile of skewness among attributes of the numeric type.
1.53
Third quartile of standard deviation of attributes of the numeric type.
0.96
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.07
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.89
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.96
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.07
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.89
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.96
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.07
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.89
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.95
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.07
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.9
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.95
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.07
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.9
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.95
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.07
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.9
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0
Standard deviation of the number of distinct values among attributes of the nominal type.
0.96
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk
0.06
Error rate achieved by the landmarker weka.classifiers.lazy.IBk
0.91
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk

58 tasks

4443 runs - estimation_procedure: 10-fold Crossvalidation - evaluation_measure: predictive_accuracy - target_feature: class
478 runs - estimation_procedure: 10-fold Crossvalidation - target_feature: class - cost matrix: [[0,10,15],[20,0,25],[10,10,0]]
394 runs - estimation_procedure: 10 times 10-fold Crossvalidation - evaluation_measure: predictive_accuracy - target_feature: class
345 runs - estimation_procedure: 33% Holdout set - evaluation_measure: predictive_accuracy - target_feature: class
329 runs - estimation_procedure: 5 times 2-fold Crossvalidation - evaluation_measure: predictive_accuracy - target_feature: class
280 runs - estimation_procedure: 10-fold Crossvalidation - evaluation_measure: matthews_correlation_coefficient - target_feature: class
32 runs - estimation_procedure: 10-fold Crossvalidation - target_feature: class
3 runs - estimation_procedure: Leave one out - evaluation_measure: predictive_accuracy - target_feature: class
1 runs - estimation_procedure: 33% Holdout set - target_feature: class
0 runs - estimation_procedure: 10-fold Crossvalidation - evaluation_measure: precision - target_feature: class
0 runs - estimation_procedure: 4-fold Crossvalidation - evaluation_measure: predictive_accuracy - target_feature: class
0 runs - estimation_procedure: 10-fold Crossvalidation - evaluation_measure: area_under_roc_curve - target_feature: class
0 runs - estimation_procedure: 10-fold Crossvalidation - evaluation_measure: c_index - target_feature: class
0 runs - estimation_procedure: 10-fold Crossvalidation - evaluation_measure: confusion_matrix - target_feature: class
0 runs - estimation_procedure: Leave one out - target_feature: class
0 runs - estimation_procedure: 5 times 2-fold Crossvalidation - target_feature: class
0 runs - estimation_procedure: 10% Holdout set - target_feature: class
0 runs - estimation_procedure: Leave one out - evaluation_measure: mean_absolute_error - target_feature: class
0 runs - estimation_procedure: 10 times 10-fold Crossvalidation - evaluation_measure: root_mean_squared_error - target_feature: class
0 runs - estimation_procedure: 4-fold Crossvalidation - target_feature: class
0 runs - estimation_procedure: 5 times 2-fold Crossvalidation - target_feature: sepalwidth
0 runs - estimation_procedure: 10 times 10-fold Crossvalidation - target_feature: sepalwidth
0 runs - estimation_procedure: 5 times 2-fold Crossvalidation - target_feature: sepallength
173 runs - estimation_procedure: 10 times 10-fold Learning Curve - evaluation_measure: predictive_accuracy - target_feature: class
82 runs - estimation_procedure: 10-fold Learning Curve - evaluation_measure: predictive_accuracy - target_feature: class
10 runs - estimation_procedure: 10-fold Learning Curve - evaluation_measure: predictive_accuracy - target_feature: class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: class
0 runs - estimation_procedure: 10 times 10-fold Learning Curve - target_feature: class
0 runs - estimation_procedure: 10 times 10-fold Learning Curve - target_feature: class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: class
60 runs - estimation_procedure: Interleaved Test then Train - target_feature: class
0 runs - estimation_procedure: Interleaved Test then Train - evaluation_measure: recall, precision - target_feature: class
0 runs - target_feature: class
0 runs - target_feature: Class
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - target_feature: ii
0 runs - target_feature: find something
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering - target_feature: class
0 runs - estimation_procedure: 50 times Clustering - target_feature: Species
0 runs - estimation_procedure: 50 times Clustering - target_feature: Euclidean Distance
0 runs - estimation_procedure: 50 times Clustering - target_feature: class
1298 runs - target_feature: class
Define a new task