DEVELOPMENT... OpenML
Data
analcatdata_dmft

analcatdata_dmft

active ARFF Publicly available Visibility: public Uploaded 28-09-2014 by Felicia West
0 likes downloaded by 14 people , 17 total downloads 0 issues 0 downvotes
  • OpenML-CC18 OpenML100 study_1 study_123 study_135 study_14 study_34 study_41 study_50 study_52 study_7 study_98 study_99 study_293 study_253 study_258 study_285
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Author: Unknown Source: [Jeffrey S. Simonoff](http://people.stern.nyu.edu/jsimonof/AnalCatData/Data/) - 2003 Please cite: Jeffrey S. Simonoff, Analyzing Categorical Data, Springer-Verlag, 2003 One of the datasets used in the book "Analyzing Categorical Data," by Jeffrey S. Simonoff. It contains data on the DMFT Index (Decayed, Missing, and Filled Teeth) before and after different prevention strategies. The prevention strategy is commonly used as the (categorical) target. ### Attribute information * DMFT.Begin and DMFT.End: DMFT index before and after the prevention strategy * Gender of the individual * Ethnicity of the individual

5 features

Prevention (target)nominal6 unique values
0 missing
DMFT.Beginnominal9 unique values
0 missing
DMFT.Endnominal7 unique values
0 missing
Gendernominal2 unique values
0 missing
Ethnicnominal3 unique values
0 missing

107 properties

797
Number of instances (rows) of the dataset.
5
Number of attributes (columns) of the dataset.
6
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
0
Number of numeric attributes.
5
Number of nominal attributes.
0.99
Average class difference between consecutive instances.
0.53
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.81
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.03
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.53
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.81
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.03
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.53
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.81
Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.03
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
2.58
Entropy of the target attribute values.
0.54
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump
0.8
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump
0.04
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump
0.01
Number of attributes divided by the number of instances.
61.62
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.53
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0.81
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0.03
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0.53
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.81
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.03
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.53
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .001
0.81
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .001
0.03
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .001
19.45
Percentage of instances belonging to the most frequent class.
155
Number of instances belonging to the most frequent class.
3.08
Maximum entropy among attributes.
Maximum kurtosis among attributes of the numeric type.
Maximum of means among attributes of the numeric type.
0.06
Maximum mutual information between the nominal attributes and the target attribute.
9
The maximum number of distinct values among attributes of the nominal type.
Maximum skewness among attributes of the numeric type.
Maximum standard deviation of attributes of the numeric type.
2.02
Average entropy of the attributes.
Mean kurtosis among attributes of the numeric type.
Mean of means among attributes of the numeric type.
0.04
Average mutual information between the nominal attributes and the target attribute.
47.17
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
5.4
Average number of distinct values among the attributes of the nominal type.
Mean skewness among attributes of the numeric type.
Mean standard deviation of attributes of the numeric type.
1
Minimal entropy among attributes.
Minimum kurtosis among attributes of the numeric type.
Minimum of means among attributes of the numeric type.
0
Minimal mutual information between the nominal attributes and the target attribute.
2
The minimal number of distinct values among attributes of the nominal type.
Minimum skewness among attributes of the numeric type.
Minimum standard deviation of attributes of the numeric type.
15.43
Percentage of instances belonging to the least frequent class.
123
Number of instances belonging to the least frequent class.
0.56
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.77
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.08
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes
1
Number of binary attributes.
20
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
0
Percentage of numeric attributes.
100
Percentage of nominal attributes.
1.11
First quartile of entropy among attributes.
First quartile of kurtosis among attributes of the numeric type.
First quartile of means among attributes of the numeric type.
0.01
First quartile of mutual information between the nominal attributes and the target attribute.
First quartile of skewness among attributes of the numeric type.
First quartile of standard deviation of attributes of the numeric type.
1.99
Second quartile (Median) of entropy among attributes.
Second quartile (Median) of kurtosis among attributes of the numeric type.
Second quartile (Median) of means among attributes of the numeric type.
0.05
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Second quartile (Median) of skewness among attributes of the numeric type.
Second quartile (Median) of standard deviation of attributes of the numeric type.
2.95
Third quartile of entropy among attributes.
Third quartile of kurtosis among attributes of the numeric type.
Third quartile of means among attributes of the numeric type.
0.06
Third quartile of mutual information between the nominal attributes and the target attribute.
Third quartile of skewness among attributes of the numeric type.
Third quartile of standard deviation of attributes of the numeric type.
0.53
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.82
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.01
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.53
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.82
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.01
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.53
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.82
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.01
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.52
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.8
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.04
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.52
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.8
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.04
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.52
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.8
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.04
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
2.88
Standard deviation of the number of distinct values among attributes of the nominal type.
0.52
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk
0.81
Error rate achieved by the landmarker weka.classifiers.lazy.IBk
0.03
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk

43 tasks

19800 runs - estimation_procedure: 10-fold Crossvalidation - target_feature: Prevention
183 runs - estimation_procedure: 10 times 10-fold Crossvalidation - evaluation_measure: predictive_accuracy - target_feature: Prevention
0 runs - estimation_procedure: 33% Holdout set - evaluation_measure: predictive_accuracy - target_feature: Prevention
0 runs - estimation_procedure: 33% Holdout set - target_feature: Prevention
0 runs - estimation_procedure: 4-fold Crossvalidation - target_feature: Prevention
46 runs - estimation_procedure: 10-fold Learning Curve - target_feature: Prevention
0 runs - estimation_procedure: Interleaved Test then Train - target_feature: Prevention
0 runs - target_feature: Prevention
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
1314 runs - target_feature: Prevention
1310 runs - target_feature: Prevention
1308 runs - target_feature: Prevention
1304 runs - target_feature: Prevention
1302 runs - target_feature: Prevention
1300 runs - target_feature: Prevention
0 runs - target_feature: Prevention
0 runs - target_feature: Prevention
0 runs - target_feature: Prevention
0 runs - target_feature: Prevention
0 runs - target_feature: Prevention
0 runs - target_feature: Prevention
0 runs - target_feature: Prevention
0 runs - target_feature: Prevention
0 runs - target_feature: Prevention
0 runs - target_feature: Prevention
0 runs - target_feature: Prevention
0 runs - target_feature: Prevention
0 runs - target_feature: Prevention
0 runs - target_feature: Prevention
0 runs - target_feature: Prevention
0 runs - target_feature: Prevention
0 runs - target_feature: Prevention
0 runs - target_feature: Prevention
Define a new task

A PHP Error was encountered

Severity: Core Warning

Message: Module 'mysqli' already loaded

Filename: Unknown

Line Number: 0

Backtrace: