DEVELOPMENT... OpenML
Data
splice

splice

active ARFF Publicly available Visibility: public Uploaded 06-04-2014 by Jason
1 likes downloaded by 18 people , 21 total downloads 0 issues 0 downvotes
  • OpenML-CC18 OpenML100 study_1 study_123 study_14 study_34 study_37 study_50 study_7 study_70 study_98 study_99 uci study_293 study_253 study_379
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Author: Genbank. Donated by G. Towell, M. Noordewier, and J. Shavlik Source: [UCI](https://archive.ics.uci.edu/ml/datasets/Molecular+Biology+(Splice-junction+Gene+Sequences)) Please cite: None Primate splice-junction gene sequences (DNA) with associated imperfect domain theory. Splice junctions are points on a DNA sequence at which 'superfluous' DNA is removed during the process of protein creation in higher organisms. The problem posed in this dataset is to recognize, given a sequence of DNA, the boundaries between exons (the parts of the DNA sequence retained after splicing) and introns (the parts of the DNA sequence that are spliced out). This problem consists of two subtasks: recognizing exon/intron boundaries (referred to as EI sites), and recognizing intron/exon boundaries (IE sites). (In the biological community, IE borders are referred to a ''acceptors'' while EI borders are referred to as ''donors''.) All examples taken from Genbank 64.1. Categories "ei" and "ie" include every "split-gene" for primates in Genbank 64.1. Non-splice examples taken from sequences known not to include a splicing site. ### Attribute Information > 1 One of {n ei ie}, indicating the class. 2 The instance name. 3-62 The remaining 60 fields are the sequence, starting at position -30 and ending at position +30. Each of these fields is almost always filled by one of {a, g, t, c}. Other characters indicate ambiguity among the standard characters according to the following table: character: meaning D: A or G or T N: A or G or C or T S: C or G R: A or G Notes: * Instance_name is an identifier and should be ignored for modelling

61 features

Class (target)nominal3 unique values
0 missing
attribute_32nominal5 unique values
0 missing
attribute_31nominal5 unique values
0 missing
attribute_33nominal5 unique values
0 missing
attribute_34nominal5 unique values
0 missing
attribute_35nominal6 unique values
0 missing
attribute_36nominal6 unique values
0 missing
attribute_37nominal5 unique values
0 missing
attribute_38nominal5 unique values
0 missing
attribute_39nominal5 unique values
0 missing
attribute_40nominal5 unique values
0 missing
attribute_41nominal5 unique values
0 missing
attribute_42nominal5 unique values
0 missing
attribute_43nominal5 unique values
0 missing
attribute_44nominal5 unique values
0 missing
attribute_45nominal5 unique values
0 missing
attribute_46nominal5 unique values
0 missing
attribute_47nominal5 unique values
0 missing
attribute_48nominal5 unique values
0 missing
attribute_49nominal5 unique values
0 missing
attribute_50nominal5 unique values
0 missing
attribute_51nominal5 unique values
0 missing
attribute_52nominal5 unique values
0 missing
attribute_53nominal5 unique values
0 missing
attribute_54nominal5 unique values
0 missing
attribute_55nominal5 unique values
0 missing
attribute_56nominal5 unique values
0 missing
attribute_57nominal5 unique values
0 missing
attribute_58nominal5 unique values
0 missing
attribute_59nominal5 unique values
0 missing
attribute_60nominal5 unique values
0 missing
attribute_16nominal4 unique values
0 missing
attribute_1nominal5 unique values
0 missing
attribute_2nominal5 unique values
0 missing
attribute_3nominal4 unique values
0 missing
attribute_4nominal4 unique values
0 missing
attribute_5nominal4 unique values
0 missing
attribute_6nominal4 unique values
0 missing
attribute_7nominal4 unique values
0 missing
attribute_8nominal4 unique values
0 missing
attribute_9nominal4 unique values
0 missing
attribute_10nominal4 unique values
0 missing
attribute_11nominal4 unique values
0 missing
attribute_12nominal4 unique values
0 missing
attribute_13nominal4 unique values
0 missing
attribute_14nominal5 unique values
0 missing
attribute_15nominal4 unique values
0 missing
Instance_name (ignore)nominal3178 unique values
0 missing
attribute_17nominal4 unique values
0 missing
attribute_18nominal4 unique values
0 missing
attribute_19nominal5 unique values
0 missing
attribute_20nominal5 unique values
0 missing
attribute_21nominal5 unique values
0 missing
attribute_22nominal5 unique values
0 missing
attribute_23nominal5 unique values
0 missing
attribute_24nominal5 unique values
0 missing
attribute_25nominal5 unique values
0 missing
attribute_26nominal5 unique values
0 missing
attribute_27nominal5 unique values
0 missing
attribute_28nominal5 unique values
0 missing
attribute_29nominal5 unique values
0 missing
attribute_30nominal5 unique values
0 missing

107 properties

3190
Number of instances (rows) of the dataset.
61
Number of attributes (columns) of the dataset.
3
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
0
Number of numeric attributes.
61
Number of nominal attributes.
1
Average class difference between consecutive instances.
0.96
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.06
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.9
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.96
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.06
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.9
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.96
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.06
Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.9
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
1.48
Entropy of the target attribute values.
0.77
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump
0.38
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump
0.41
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump
0.02
Number of attributes divided by the number of instances.
26.31
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.96
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0.07
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0.89
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0.96
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.07
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.89
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.96
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .001
0.07
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .001
0.89
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .001
51.88
Percentage of instances belonging to the most frequent class.
1655
Number of instances belonging to the most frequent class.
2.01
Maximum entropy among attributes.
Maximum kurtosis among attributes of the numeric type.
Maximum of means among attributes of the numeric type.
0.39
Maximum mutual information between the nominal attributes and the target attribute.
6
The maximum number of distinct values among attributes of the nominal type.
Maximum skewness among attributes of the numeric type.
Maximum standard deviation of attributes of the numeric type.
1.98
Average entropy of the attributes.
Mean kurtosis among attributes of the numeric type.
Mean of means among attributes of the numeric type.
0.06
Average mutual information between the nominal attributes and the target attribute.
34.16
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
4.75
Average number of distinct values among the attributes of the nominal type.
Mean skewness among attributes of the numeric type.
Mean standard deviation of attributes of the numeric type.
1.67
Minimal entropy among attributes.
Minimum kurtosis among attributes of the numeric type.
Minimum of means among attributes of the numeric type.
0
Minimal mutual information between the nominal attributes and the target attribute.
3
The minimal number of distinct values among attributes of the nominal type.
Minimum skewness among attributes of the numeric type.
Minimum standard deviation of attributes of the numeric type.
24.04
Percentage of instances belonging to the least frequent class.
767
Number of instances belonging to the least frequent class.
0.99
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.05
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.92
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0
Number of binary attributes.
0
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
0
Percentage of numeric attributes.
100
Percentage of nominal attributes.
1.99
First quartile of entropy among attributes.
First quartile of kurtosis among attributes of the numeric type.
First quartile of means among attributes of the numeric type.
0.01
First quartile of mutual information between the nominal attributes and the target attribute.
First quartile of skewness among attributes of the numeric type.
First quartile of standard deviation of attributes of the numeric type.
2
Second quartile (Median) of entropy among attributes.
Second quartile (Median) of kurtosis among attributes of the numeric type.
Second quartile (Median) of means among attributes of the numeric type.
0.01
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Second quartile (Median) of skewness among attributes of the numeric type.
Second quartile (Median) of standard deviation of attributes of the numeric type.
2
Third quartile of entropy among attributes.
Third quartile of kurtosis among attributes of the numeric type.
Third quartile of means among attributes of the numeric type.
0.06
Third quartile of mutual information between the nominal attributes and the target attribute.
Third quartile of skewness among attributes of the numeric type.
Third quartile of standard deviation of attributes of the numeric type.
0.96
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.09
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.85
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.96
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.09
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.85
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.96
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.09
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.85
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.77
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.31
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.5
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.77
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.31
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.5
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.77
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.31
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.5
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.54
Standard deviation of the number of distinct values among attributes of the nominal type.
0.86
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk
0.27
Error rate achieved by the landmarker weka.classifiers.lazy.IBk
0.6
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk

34 tasks

20617 runs - estimation_procedure: 10-fold Crossvalidation - target_feature: Class
31 runs - estimation_procedure: 10-fold Crossvalidation - target_feature: Class
0 runs - estimation_procedure: 5 times 2-fold Crossvalidation - evaluation_measure: predictive_accuracy - target_feature: Class
0 runs - estimation_procedure: 10 times 10-fold Crossvalidation - evaluation_measure: predictive_accuracy - target_feature: Class
0 runs - estimation_procedure: 33% Holdout set - evaluation_measure: predictive_accuracy - target_feature: Class
0 runs - estimation_procedure: 33% Holdout set - target_feature: Class
0 runs - estimation_procedure: 4-fold Crossvalidation - target_feature: Class
46 runs - estimation_procedure: 10-fold Learning Curve - evaluation_measure: predictive_accuracy - target_feature: Class
0 runs - estimation_procedure: 10 times 10-fold Learning Curve - evaluation_measure: predictive_accuracy - target_feature: Class
25 runs - estimation_procedure: Interleaved Test then Train - target_feature: Class
0 runs - target_feature: Class
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
1311 runs - target_feature: Class
1309 runs - target_feature: Class
1307 runs - target_feature: Class
0 runs - target_feature: Class
0 runs - target_feature: Class
0 runs - target_feature: Class
0 runs - target_feature: Class
0 runs - target_feature: Class
0 runs - target_feature: Class
0 runs - target_feature: Class
0 runs - target_feature: Class
0 runs - target_feature: Class
Define a new task