DEVELOPMENT... OpenML
Data
Contaminant-detection-in-packaged-cocoa-hazelnut-spread-jars-using-Microwaves-Sensing-and-Machine-Learning-10.5GHz(Urbinati)

Contaminant-detection-in-packaged-cocoa-hazelnut-spread-jars-using-Microwaves-Sensing-and-Machine-Learning-10.5GHz(Urbinati)

active ARFF CC BY-SA Visibility: public Uploaded 31-05-2023 by
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Contaminant-detection-in-packaged-cocoa-hazelnut-spread-jars-using-Microwaves-Sensing-and-Machine-Learning-10.5GHz(Urbinati) ---------------- This dataset is part of a series of five different datasets each one measured with a different microwave frequency: 9.0, 9.5, 10.0, 10.5, 11.0 GHz. PAY ATTENTION: THE DATASET PRESENTED IN THIS PAGE HAS BEEN ACQUIRED AT 10.5 GHz! IF YOU ARE LOOKING FOR THE OTHER FOUR DATASETS, VISIT THE OPENML PROFILE OF THE AUTHOR OF THIS DATASET. The following description is valid for all the five datasets. Dataset description. To detect contaminants accidentally included in industrial food, Microwave Sensing (MWS) can be used as a contactless detection method, in particular when the food is already packaged. MWS uses microwaves to illuminate the target object through a set of antennas, records the scattered waves, and uses Machine Learning to predict the presence of contaminants inside the target object. In this application the target object is a cocoa-hazelnut spread jar and each instance (sample) of this dataset consists in 30 scattering parameters of the network composed by: antennas, target object (a jar w/ or w/o a contaminant inside) and medium (i.e. the air) in between. The types of contaminants vary from metal to glass and plastic. Each sample has been measured at five different microwave frequencies that are: 9.0, 9.5, 10.0, 10.5, 11.0 GHz. PAY ATTENTION: THE DATASET PRESENTED IN THIS PAGE HAS BEEN ACQUIRED AT 10.5 GHz! IF YOU ARE LOOKING FOR THE OTHER FOUR DATASETS, VISIT THE OPENML PROFILE OF THE AUTHOR OF THIS DATASET. Data Set Characteristics: :Microwave frequency used for acquisition: 10.5 GHz :Total Number of Instances: 2400 :Total Number of Uncontaminated Instances: 1200 :Total Number of Contaminated Instances: 1200 :Total Number of Classes: 11 :Target: The last column, column 31, contains the class label as integer value :Number of Contaminated Instances Divided Per Class (full explanation and pictures in [2]): - "air_surface" (i.e. cap-shape plastic with the same dielectric constant of the air): 200 - "big_pink_plastic_shere_middle": 100 - "big_pink_plastic_shere_surface": 100 - "glass_fragment_middle": 100 - "glass_fragment_surface": 100 - "small_metal_sphere_middle": 100 - "small_metal_sphere_surface": 100 - "small_plastic_sphere_middle": 100 - "small_plastic_sphere_surface": 100 - "small_triangular_plastic_fragment_surface": 200 "surface" means that the instance was placed on top of the cocoa-hazelnut spread, at the spread-air interface "middle" means that the instance was placed in the middle of the jar filled with cocoa-hazelnut spread :Number of Attributes in a generic Instance: 30 :Attribute Information: This is the 6x6 Scattering Matrix (S): S = [ s12, s13, s14, s15, s16, s21, s23, s24, s25, s26, s31, s32, s34, s35, s36, s41, s42, s43, s45, s46, s51, s52, s53, s54, s56, s61, s62, s63, s64, s65, ] The first 30 attributes (columns) of an instance are the 15 elements of the triangular upper part of S. Since each of these elements is a complex number with real and imaginary parts, each instance is a vector of 15x2=30 attributes. The real (real) and imaginary (img) parts of each element are placed one after the other. The scattering parameters are ordered row by row from left to right, e.g.: s12_real, s12_img, s13_real, s13_img, ..., s16_real, s16_img, s21_real, s21_img, ... . The self-scattering parameters, i.e. those placed on the main diagional of S, are not part of the dataset, as exaplined in [1]. Note: This dataset is realeased without pre-processing. For more information read the reference papers: [1] L. Urbinati, M. Ricci, G. Turvani, J. A. T. Vasquez, F. Vipiana and M. R. Casu, "A Machine-Learning Based Microwave Sensing Approach to Food Contaminant Detection," 2020 IEEE International Symposium on Circuits and Systems (ISCAS), Seville, Spain, 2020, pp. 1-5, doi: 10.1109/ISCAS45731.2020.9181293 Link to the paper: https://ieeexplore.ieee.org/abstract/document/9181293 [2] M. Ricci, B. Stitic, L. Urbinati, G. D. Guglielmo, J. A. T. Vasquez, L. P. Carloni, F. Vipiana, and M. R. Casu, "Machine-learning-based microwave sensing: A case study for the food industry," IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol. 11, no. 3, pp. 503-514, 2021 Link to the paper: https://ieeexplore.ieee.org/abstract/document/9489295

31 features

class (target)numeric2 unique values
0 missing
s41numeric1051 unique values
0 missing
s65numeric825 unique values
0 missing
s64numeric1081 unique values
0 missing
s63numeric594 unique values
0 missing
s62numeric614 unique values
0 missing
s61numeric693 unique values
0 missing
s56numeric821 unique values
0 missing
s54numeric1614 unique values
0 missing
s53numeric1483 unique values
0 missing
s52numeric826 unique values
0 missing
s51numeric1131 unique values
0 missing
s46numeric615 unique values
0 missing
s45numeric695 unique values
0 missing
s43numeric1098 unique values
0 missing
s42numeric984 unique values
0 missing
s12numeric1664 unique values
0 missing
s36numeric1221 unique values
0 missing
s35numeric652 unique values
0 missing
s34numeric689 unique values
0 missing
s32numeric1122 unique values
0 missing
s31numeric1437 unique values
0 missing
s26numeric1073 unique values
0 missing
s25numeric1302 unique values
0 missing
s24numeric1292 unique values
0 missing
s23numeric1416 unique values
0 missing
s21numeric1396 unique values
0 missing
s16numeric1373 unique values
0 missing
s15numeric1740 unique values
0 missing
s14numeric1569 unique values
0 missing
s13numeric1893 unique values
0 missing

19 properties

2400
Number of instances (rows) of the dataset.
31
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
31
Number of numeric attributes.
0
Number of nominal attributes.
0
Percentage of nominal attributes.
1
Average class difference between consecutive instances.
100
Percentage of numeric attributes.
0
Percentage of missing values.
0
Percentage of instances having missing values.
0
Percentage of binary attributes.
0
Number of binary attributes.
Number of instances belonging to the least frequent class.
Percentage of instances belonging to the least frequent class.
Number of instances belonging to the most frequent class.
Percentage of instances belonging to the most frequent class.
0.01
Number of attributes divided by the number of instances.

0 tasks

Define a new task

A PHP Error was encountered

Severity: Core Warning

Message: Module 'mysqli' already loaded

Filename: Unknown

Line Number: 0

Backtrace: