DEVELOPMENT... OpenML
Data
Buzzinsocialmedia_Twitter

Buzzinsocialmedia_Twitter

active ARFF Publicly available Visibility: public Uploaded 17-02-2016 by unknown
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Author: Creators : François Kawala (1","2) Ahlame Douzal (1) Eric Gaussier (1) Eustache Diemert (2) Institutions : (1) Université Joseph Fourier (Grenoble I) Laboratoire d'informatique de Grenoble (LIG) (2) BestofMedia Group Donor: BestofMedia (ediemert '@' bestofmedia.com) Source: UCI Please cite: Prédictions d’activité dans les réseaux sociaux en ligne (F. Kawala, A. Douzal-Chouakria, E. Gaussier, E. Dimert), In Actes de la Conférence sur les Modèles et l′Analyse des Réseaux : Approches Mathématiques et Informatique (MARAMI), pp. 16, 2013. Abstract: This data-set contains examples of buzz events from two different social networks: Twitter, and Tom's Hardware, a forum network focusing on new technology with more conservative dynamics. Source: Creators : François Kawala (1,2) Ahlame Douzal (1) Eric Gaussier (1) Eustache Diemert (2) Institutions : (1) Université Joseph Fourier (Grenoble I) Laboratoire d'informatique de Grenoble (LIG) (2) BestofMedia Group Donor: BestofMedia (ediemert '@' bestofmedia.com) Data Set Information: Please see [Web Link] Attribute Information: Please see [Web Link] Relevant Papers: Prédictions d’activité dans les réseaux sociaux en ligne (F. Kawala, A. Douzal-Chouakria, E. Gaussier, E. Dimert), In Actes de la Conférence sur les Modèles et l′Analyse des Réseaux : Approches Mathématiques et Informatique (MARAMI), pp. 16, 2013. Citation Request: Prédictions d’activité dans les réseaux sociaux en ligne (F. Kawala, A. Douzal-Chouakria, E. Gaussier, E. Dimert), In Actes de la Conférence sur les Modèles et l′Analyse des Réseaux : Approches Mathématiques et Informatique (MARAMI), pp. 16, 2013.

78 features

Annotation (target)numeric8123 unique values
0 missing
NA_1numeric3758 unique values
0 missing
ASNAC_5numeric4376 unique values
0 missing
NA_0numeric3847 unique values
0 missing
AT_6numeric47608 unique values
0 missing
AT_5numeric47746 unique values
0 missing
AT_4numeric45177 unique values
0 missing
AT_3numeric42497 unique values
0 missing
AT_2numeric39407 unique values
0 missing
AT_1numeric36415 unique values
0 missing
AT_0numeric37782 unique values
0 missing
CS_6numeric2 unique values
0 missing
CS_5numeric2 unique values
0 missing
CS_4numeric2 unique values
0 missing
CS_3numeric2 unique values
0 missing
CS_2numeric2 unique values
0 missing
CS_1numeric2 unique values
0 missing
CS_0numeric2 unique values
0 missing
ASNAC_6numeric4340 unique values
0 missing
ASNAC_4numeric4249 unique values
0 missing
ADL_4numeric52049 unique values
0 missing
NAD_6numeric5682 unique values
0 missing
NAD_5numeric5671 unique values
0 missing
NAD_4numeric5412 unique values
0 missing
NAD_3numeric5123 unique values
0 missing
NAD_2numeric4740 unique values
0 missing
NAD_1numeric4373 unique values
0 missing
NAD_0numeric4417 unique values
0 missing
ADL_6numeric54668 unique values
0 missing
ADL_5numeric54881 unique values
0 missing
NA_2numeric4144 unique values
0 missing
ADL_3numeric48872 unique values
0 missing
ADL_2numeric45332 unique values
0 missing
ADL_1numeric41808 unique values
0 missing
ADL_0numeric43341 unique values
0 missing
NA_6numeric4889 unique values
0 missing
NA_5numeric4930 unique values
0 missing
NA_4numeric4723 unique values
0 missing
NA_3numeric4451 unique values
0 missing
AI_3numeric3009 unique values
0 missing
ASNA_5numeric6242 unique values
0 missing
ASNA_4numeric6031 unique values
0 missing
ASNA_3numeric5811 unique values
0 missing
ASNA_2numeric5604 unique values
0 missing
ASNA_1numeric5344 unique values
0 missing
ASNA_0numeric5408 unique values
0 missing
AI_6numeric3299 unique values
0 missing
AI_5numeric3299 unique values
0 missing
AI_4numeric3176 unique values
0 missing
ASNA_6numeric6150 unique values
0 missing
AI_2numeric2797 unique values
0 missing
AI_1numeric2551 unique values
0 missing
AI_0numeric2505 unique values
0 missing
NCD_6numeric5656 unique values
0 missing
NCD_5numeric5656 unique values
0 missing
NCD_4numeric5435 unique values
0 missing
NCD_3numeric5162 unique values
0 missing
NCD_2numeric4762 unique values
0 missing
NCD_1numeric4359 unique values
0 missing
NAC_1numeric4492 unique values
0 missing
ASNAC_3numeric4125 unique values
0 missing
ASNAC_2numeric3957 unique values
0 missing
ASNAC_1numeric3734 unique values
0 missing
ASNAC_0numeric3815 unique values
0 missing
NAC_6numeric5837 unique values
0 missing
NAC_5numeric5812 unique values
0 missing
NAC_4numeric5577 unique values
0 missing
NAC_3numeric5259 unique values
0 missing
NAC_2numeric4896 unique values
0 missing
NCD_0numeric4410 unique values
0 missing
NAC_0numeric4562 unique values
0 missing
BL_6numeric10077 unique values
0 missing
BL_5numeric9986 unique values
0 missing
BL_4numeric9708 unique values
0 missing
BL_3numeric9349 unique values
0 missing
BL_2numeric8839 unique values
0 missing
BL_1numeric8621 unique values
0 missing
BL_0numeric9090 unique values
0 missing

107 properties

583250
Number of instances (rows) of the dataset.
78
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
78
Number of numeric attributes.
0
Number of nominal attributes.
-45.64
Average class difference between consecutive instances.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Entropy of the target attribute values.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump
0
Number of attributes divided by the number of instances.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .00001
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .00001
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .0001
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .0001
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .001
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .001
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .001
Percentage of instances belonging to the most frequent class.
Number of instances belonging to the most frequent class.
Maximum entropy among attributes.
12453.48
Maximum kurtosis among attributes of the numeric type.
234.22
Maximum of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
87.72
Maximum skewness among attributes of the numeric type.
696.42
Maximum standard deviation of attributes of the numeric type.
Average entropy of the attributes.
2295.77
Mean kurtosis among attributes of the numeric type.
74.64
Mean of means among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Average number of distinct values among the attributes of the nominal type.
23.45
Mean skewness among attributes of the numeric type.
224.96
Mean standard deviation of attributes of the numeric type.
Minimal entropy among attributes.
6.21
Minimum kurtosis among attributes of the numeric type.
0
Minimum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
-4.75
Minimum skewness among attributes of the numeric type.
0
Minimum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
Number of instances belonging to the least frequent class.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0
Number of binary attributes.
0
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
100
Percentage of numeric attributes.
0
Percentage of nominal attributes.
First quartile of entropy among attributes.
310.09
First quartile of kurtosis among attributes of the numeric type.
0.92
First quartile of means among attributes of the numeric type.
First quartile of mutual information between the nominal attributes and the target attribute.
12.59
First quartile of skewness among attributes of the numeric type.
0.25
First quartile of standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
756.67
Second quartile (Median) of kurtosis among attributes of the numeric type.
1.1
Second quartile (Median) of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
14.9
Second quartile (Median) of skewness among attributes of the numeric type.
1.48
Second quartile (Median) of standard deviation of attributes of the numeric type.
Third quartile of entropy among attributes.
1331.41
Third quartile of kurtosis among attributes of the numeric type.
157.99
Third quartile of means among attributes of the numeric type.
Third quartile of mutual information between the nominal attributes and the target attribute.
19.07
Third quartile of skewness among attributes of the numeric type.
471.18
Third quartile of standard deviation of attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 1
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 1
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 2
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 2
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
Standard deviation of the number of distinct values among attributes of the nominal type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk
Error rate achieved by the landmarker weka.classifiers.lazy.IBk
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk

13 tasks

2 runs - estimation_procedure: 10-fold Crossvalidation - evaluation_measure: root_mean_squared_error - target_feature: Annotation
0 runs - estimation_procedure: 33% Holdout set - target_feature: Annotation
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task