DEVELOPMENT... OpenML
Data
KEGGMetabolicReactionNetwork

KEGGMetabolicReactionNetwork

active ARFF Publicly available Visibility: public Uploaded 16-02-2016 by unknown
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Author: 1. Muhammad Naeem","Centre of Research in Data Engineering(CORDE)","MAJU Islamabad Pakistan(naeems.naeem '@' gmail.com). 2. Sohail Asghar","Director/Associate Professor University Institute of IT PMAS-Arid Agriculture University","Rawalpindi Pakistan","Centre of Research in Data Engineering (CORDE)","(sohail.asghar '@' gmail.com) Source: UCI Please cite: Naeem M,Asghar S, Centre of Research in Data Engineering Islamabad Pakistan, naeems.naeem '@' gmail.com, sohail.asg '@' gmail.com Source: 1. Muhammad Naeem, Centre of Research in Data Engineering(CORDE) & Department of Computer Science, MAJU Islamabad Pakistan(naeems.naeem '@' gmail.com). 2. Sohail Asghar, Director/Associate Professor University Institute of IT PMAS-Arid Agriculture University,Rawalpindi Pakistan, Centre of Research in Data Engineering (CORDE),(sohail.asghar '@' gmail.com) Data Set Information: KEGG Metabolic pathways can be realized into network. Two kinds of network / graph can be formed. These include Reaction Network and Relation Network. In Reaction network, Substrate or Product compound are considered as Node and genes are treated as edge. Whereas in the relation network, Substrate and Product componds are considered as Edges while enzyme and genes are placed as nodes. We tool large number of metabolic pathways from KEGG XML. They were modeled into the graph as described above. With the help of Cytoscape tool, variety of network features were compunted. Attribute Information: a) Pathway text b) Connected Components Integer (min:1, max:39 ) c) Diameter Integer (min:1, max:46 ) d) Radius Integer (min:1, max:13 ) e) Centralization Integer (min:0, max:1 ) f) Shortest Path Integer (min:2, max:23420 ) g) Characteristic Path Length Integer (min:1, [Web Link] ) h) Avg.num.Neighbours real ([Web Link], [Web Link]) i) Density real ([Web Link], max:1) j) Heterogeneity real (min:0, [Web Link]) k) Isolated Nodes Integer (min:0, max:3) l) Number of Self Loops Integer (min:0, max:4) m) Multi-edge Node Pair Integer (min:0, max:220) n) NeighborhoodConnectivity real ([Web Link], [Web Link]) o) NumberOfDirectedEdges real ([Web Link], [Web Link]) p) Stress real (min:0, [Web Link]) q) SelfLoops real (min:0, [Web Link]) r) Partner Of MultiEdged NodePairs Integer (min:0, max:3) s) Degree real (min:1, [Web Link]) t) TopologicalCoefficient real (min:0, max:1) u) BetweennessCentrality real (min:0, [Web Link]) v) Radiality real ([Web Link], max:30744573457 ) w) Eccentricity real ([Web Link], [Web Link]) x) NumberOfUndirectedEdges real (min:0, [Web Link]) y) ClosenessCentrality real ([Web Link], max:1) z) AverageShortestPathLength real ([Web Link], [Web Link] ) aa) ClusteringCoefficient real (min:0, max:1) bb) nodeCount Integer (min:2, max:232) cc) edgeCount Integer (min:1, max:444) Relevant Papers: Shannon,P., Markiel,A., Ozier,O., Baliga,N.S., Wang,J.T.,Ramage,D., Amin,N., Schwikowski,B. and Ideker,T. (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res., 13, 2498–2504. Citation Request: Naeem M,Asghar S, Centre of Research in Data Engineering Islamabad Pakistan, naeems.naeem '@' gmail.com, sohail.asg '@' gmail.com

29 features

V15numeric1537 unique values
0 missing
V29numeric150 unique values
0 missing
V28numeric84 unique values
0 missing
V27numeric2249 unique values
0 missing
V26numeric9984 unique values
0 missing
V25numeric13842 unique values
0 missing
V24numeric91 unique values
0 missing
V23numeric3471 unique values
0 missing
V22numeric10099 unique values
0 missing
V21numeric9547 unique values
0 missing
V20numeric8649 unique values
0 missing
V19numeric1529 unique values
0 missing
V18numeric858 unique values
0 missing
V17numeric91 unique values
0 missing
V16numeric7234 unique values
0 missing
V1nominal63009 unique values
0 missing
V14numeric7902 unique values
0 missing
V13numeric47 unique values
0 missing
V12numeric5 unique values
0 missing
V11numeric4 unique values
0 missing
V10numeric3998 unique values
0 missing
V9numeric1176 unique values
0 missing
V8numeric801 unique values
0 missing
V7numeric7734 unique values
0 missing
V6numeric838 unique values
0 missing
V5nominal2733 unique values
0 missing
V4numeric13 unique values
0 missing
V3numeric26 unique values
0 missing
V2numeric22 unique values
0 missing

107 properties

65554
Number of instances (rows) of the dataset.
29
Number of attributes (columns) of the dataset.
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
27
Number of numeric attributes.
2
Number of nominal attributes.
Average class difference between consecutive instances.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Entropy of the target attribute values.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump
0
Number of attributes divided by the number of instances.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .00001
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .00001
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .0001
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .0001
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .001
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .001
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .001
Percentage of instances belonging to the most frequent class.
Number of instances belonging to the most frequent class.
Maximum entropy among attributes.
1040.9
Maximum kurtosis among attributes of the numeric type.
109382990.48
Maximum of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
63009
The maximum number of distinct values among attributes of the nominal type.
17.43
Maximum skewness among attributes of the numeric type.
1038253561.49
Maximum standard deviation of attributes of the numeric type.
Average entropy of the attributes.
89.67
Mean kurtosis among attributes of the numeric type.
4051229.77
Mean of means among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
32871
Average number of distinct values among the attributes of the nominal type.
4.42
Mean skewness among attributes of the numeric type.
38453850.56
Mean standard deviation of attributes of the numeric type.
Minimal entropy among attributes.
-1.01
Minimum kurtosis among attributes of the numeric type.
0
Minimum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
2733
The minimal number of distinct values among attributes of the nominal type.
-0.25
Minimum skewness among attributes of the numeric type.
0.01
Minimum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
Number of instances belonging to the least frequent class.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0
Number of binary attributes.
0
Percentage of binary attributes.
0
Percentage of instances having missing values.
0
Percentage of missing values.
93.1
Percentage of numeric attributes.
6.9
Percentage of nominal attributes.
First quartile of entropy among attributes.
2.52
First quartile of kurtosis among attributes of the numeric type.
0.18
First quartile of means among attributes of the numeric type.
First quartile of mutual information between the nominal attributes and the target attribute.
1.36
First quartile of skewness among attributes of the numeric type.
0.19
First quartile of standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
4.52
Second quartile (Median) of kurtosis among attributes of the numeric type.
1.95
Second quartile (Median) of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
1.92
Second quartile (Median) of skewness among attributes of the numeric type.
1.03
Second quartile (Median) of standard deviation of attributes of the numeric type.
Third quartile of entropy among attributes.
94.82
Third quartile of kurtosis among attributes of the numeric type.
4.12
Third quartile of means among attributes of the numeric type.
Third quartile of mutual information between the nominal attributes and the target attribute.
8.61
Third quartile of skewness among attributes of the numeric type.
3.26
Third quartile of standard deviation of attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 1
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 1
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 2
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 2
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
42621.57
Standard deviation of the number of distinct values among attributes of the nominal type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk
Error rate achieved by the landmarker weka.classifiers.lazy.IBk
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk

11 tasks

0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task