DEVELOPMENT... OpenML
Data
Intersectional-Bias-Assessment

Intersectional-Bias-Assessment

active ARFF CC-4Y Visibility: public Uploaded 11-01-2023 by Robertson
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This synthetic dataset contains demographic and clinical data used to train a classifier to predict a diagnosis (of schizophrenia or depression) and assess the model performance for intersectional bias. This dataset is used in the tutorial 'An Intersectional Approach to Model Construction and Evaluation in Mental Health Care' presented at ACM FAccT 2022.

20 features

Diagnosis (target)numeric2 unique values
0 missing
Unusual_Thoughtnumeric10999 unique values
0 missing
datasetstring2 unique values
0 missing
Tensionnumeric11000 unique values
0 missing
Passivenumeric11000 unique values
0 missing
Withdrawalnumeric11000 unique values
0 missing
Suspiciousnumeric11000 unique values
0 missing
Delusionnumeric11000 unique values
0 missing
Psychomotornumeric11000 unique values
0 missing
Concentrationnumeric11000 unique values
0 missing
Ruminationnumeric11000 unique values
0 missing
Appetitenumeric11000 unique values
0 missing
Tirednumeric11000 unique values
0 missing
Sleepnumeric11000 unique values
0 missing
Dep_Moodnumeric11000 unique values
0 missing
Anhedonianumeric11000 unique values
0 missing
Delaystring2 unique values
0 missing
Housingstring2 unique values
0 missing
Racestring4 unique values
0 missing
Sexstring2 unique values
0 missing

19 properties

11000
Number of instances (rows) of the dataset.
20
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
15
Number of numeric attributes.
0
Number of nominal attributes.
0
Percentage of nominal attributes.
0.5
Average class difference between consecutive instances.
75
Percentage of numeric attributes.
0
Percentage of missing values.
0
Percentage of instances having missing values.
0
Percentage of binary attributes.
0
Number of binary attributes.
Number of instances belonging to the least frequent class.
Percentage of instances belonging to the least frequent class.
Number of instances belonging to the most frequent class.
Percentage of instances belonging to the most frequent class.
0
Number of attributes divided by the number of instances.

0 tasks

Define a new task