DEVELOPMENT... OpenML
Data
sf-police-incidents_seed_4_nrows_2000_nclasses_10_ncols_100_stratify_True

sf-police-incidents_seed_4_nrows_2000_nclasses_10_ncols_100_stratify_True

active ARFF Public Domain (CC0) Visibility: public Uploaded 17-11-2022 by David Wilson
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Subsampling of the dataset sf-police-incidents (42732) with seed=4 args.nrows=2000 args.ncols=100 args.nclasses=10 args.no_stratify=True Generated with the following source code: ```python def subsample( self, seed: int, nrows_max: int = 2_000, ncols_max: int = 100, nclasses_max: int = 10, stratified: bool = True, ) -> Dataset: rng = np.random.default_rng(seed) x = self.x y = self.y # Uniformly sample classes = y.unique() if len(classes) > nclasses_max: vcs = y.value_counts() selected_classes = rng.choice( classes, size=nclasses_max, replace=False, p=vcs / sum(vcs), ) # Select the indices where one of these classes is present idxs = y.index[y.isin(classes)] x = x.iloc[idxs] y = y.iloc[idxs] # Uniformly sample columns if required if len(x.columns) > ncols_max: columns_idxs = rng.choice( list(range(len(x.columns))), size=ncols_max, replace=False ) sorted_column_idxs = sorted(columns_idxs) selected_columns = list(x.columns[sorted_column_idxs]) x = x[selected_columns] else: sorted_column_idxs = list(range(len(x.columns))) if len(x) > nrows_max: # Stratify accordingly target_name = y.name data = pd.concat((x, y), axis="columns") _, subset = train_test_split( data, test_size=nrows_max, stratify=data[target_name], shuffle=True, random_state=seed, ) x = subset.drop(target_name, axis="columns") y = subset[target_name] # We need to convert categorical columns to string for openml categorical_mask = [self.categorical_mask[i] for i in sorted_column_idxs] columns = list(x.columns) return Dataset( # Technically this is not the same but it's where it was derived from dataset=self.dataset, x=x, y=y, categorical_mask=categorical_mask, columns=columns, ) ```

9 features

ViolentCrime (target)nominal2 unique values
0 missing
Hournumeric24 unique values
0 missing
DayOfWeeknominal7 unique values
0 missing
Monthnominal12 unique values
0 missing
Yearnominal16 unique values
0 missing
PdDistrictnominal10 unique values
0 missing
Addressnominal1518 unique values
0 missing
Xnumeric1595 unique values
0 missing
Ynumeric1595 unique values
0 missing

19 properties

2000
Number of instances (rows) of the dataset.
9
Number of attributes (columns) of the dataset.
2
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
3
Number of numeric attributes.
6
Number of nominal attributes.
66.67
Percentage of nominal attributes.
0.79
Average class difference between consecutive instances.
33.33
Percentage of numeric attributes.
0
Percentage of missing values.
0
Percentage of instances having missing values.
11.11
Percentage of binary attributes.
1
Number of binary attributes.
243
Number of instances belonging to the least frequent class.
12.15
Percentage of instances belonging to the least frequent class.
1757
Number of instances belonging to the most frequent class.
87.85
Percentage of instances belonging to the most frequent class.
0
Number of attributes divided by the number of instances.

0 tasks

Define a new task