DEVELOPMENT... OpenML
Data
Click_prediction_small_seed_1_nrows_2000_nclasses_10_ncols_100_stratify_True

Click_prediction_small_seed_1_nrows_2000_nclasses_10_ncols_100_stratify_True

active ARFF Publicly available Visibility: public Uploaded 17-11-2022 by David Wilson
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Subsampling of the dataset Click_prediction_small (42733) with seed=1 args.nrows=2000 args.ncols=100 args.nclasses=10 args.no_stratify=True Generated with the following source code: ```python def subsample( self, seed: int, nrows_max: int = 2_000, ncols_max: int = 100, nclasses_max: int = 10, stratified: bool = True, ) -> Dataset: rng = np.random.default_rng(seed) x = self.x y = self.y # Uniformly sample classes = y.unique() if len(classes) > nclasses_max: vcs = y.value_counts() selected_classes = rng.choice( classes, size=nclasses_max, replace=False, p=vcs / sum(vcs), ) # Select the indices where one of these classes is present idxs = y.index[y.isin(classes)] x = x.iloc[idxs] y = y.iloc[idxs] # Uniformly sample columns if required if len(x.columns) > ncols_max: columns_idxs = rng.choice( list(range(len(x.columns))), size=ncols_max, replace=False ) sorted_column_idxs = sorted(columns_idxs) selected_columns = list(x.columns[sorted_column_idxs]) x = x[selected_columns] else: sorted_column_idxs = list(range(len(x.columns))) if len(x) > nrows_max: # Stratify accordingly target_name = y.name data = pd.concat((x, y), axis="columns") _, subset = train_test_split( data, test_size=nrows_max, stratify=data[target_name], shuffle=True, random_state=seed, ) x = subset.drop(target_name, axis="columns") y = subset[target_name] # We need to convert categorical columns to string for openml categorical_mask = [self.categorical_mask[i] for i in sorted_column_idxs] columns = list(x.columns) return Dataset( # Technically this is not the same but it's where it was derived from dataset=self.dataset, x=x, y=y, categorical_mask=categorical_mask, columns=columns, ) ```

12 features

click (target)nominal2 unique values
0 missing
impressionnumeric25 unique values
0 missing
url_hashnumeric943 unique values
0 missing
ad_idnominal1654 unique values
0 missing
advertiser_idnominal899 unique values
0 missing
depthnumeric3 unique values
0 missing
positionnumeric3 unique values
0 missing
query_idnumeric1817 unique values
0 missing
keyword_idnominal1647 unique values
0 missing
title_idnominal1731 unique values
0 missing
description_idnominal1675 unique values
0 missing
user_idnominal1498 unique values
0 missing

19 properties

2000
Number of instances (rows) of the dataset.
12
Number of attributes (columns) of the dataset.
2
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
5
Number of numeric attributes.
7
Number of nominal attributes.
58.33
Percentage of nominal attributes.
0.72
Average class difference between consecutive instances.
41.67
Percentage of numeric attributes.
0
Percentage of missing values.
0
Percentage of instances having missing values.
8.33
Percentage of binary attributes.
1
Number of binary attributes.
337
Number of instances belonging to the least frequent class.
16.85
Percentage of instances belonging to the least frequent class.
1663
Number of instances belonging to the most frequent class.
83.15
Percentage of instances belonging to the most frequent class.
0.01
Number of attributes divided by the number of instances.

0 tasks

Define a new task