DEVELOPMENT... OpenML
Data
kick_seed_0_nrows_2000_nclasses_10_ncols_100_stratify_True

kick_seed_0_nrows_2000_nclasses_10_ncols_100_stratify_True

active ARFF Public Domain (CC0) Visibility: public Uploaded 17-11-2022 by David Wilson
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Subsampling of the dataset kick (41162) with seed=0 args.nrows=2000 args.ncols=100 args.nclasses=10 args.no_stratify=True Generated with the following source code: ```python def subsample( self, seed: int, nrows_max: int = 2_000, ncols_max: int = 100, nclasses_max: int = 10, stratified: bool = True, ) -> Dataset: rng = np.random.default_rng(seed) x = self.x y = self.y # Uniformly sample classes = y.unique() if len(classes) > nclasses_max: vcs = y.value_counts() selected_classes = rng.choice( classes, size=nclasses_max, replace=False, p=vcs / sum(vcs), ) # Select the indices where one of these classes is present idxs = y.index[y.isin(classes)] x = x.iloc[idxs] y = y.iloc[idxs] # Uniformly sample columns if required if len(x.columns) > ncols_max: columns_idxs = rng.choice( list(range(len(x.columns))), size=ncols_max, replace=False ) sorted_column_idxs = sorted(columns_idxs) selected_columns = list(x.columns[sorted_column_idxs]) x = x[selected_columns] else: sorted_column_idxs = list(range(len(x.columns))) if len(x) > nrows_max: # Stratify accordingly target_name = y.name data = pd.concat((x, y), axis="columns") _, subset = train_test_split( data, test_size=nrows_max, stratify=data[target_name], shuffle=True, random_state=seed, ) x = subset.drop(target_name, axis="columns") y = subset[target_name] # We need to convert categorical columns to string for openml categorical_mask = [self.categorical_mask[i] for i in sorted_column_idxs] columns = list(x.columns) return Dataset( # Technically this is not the same but it's where it was derived from dataset=self.dataset, x=x, y=y, categorical_mask=categorical_mask, columns=columns, ) ```

33 features

IsBadBuy (target)nominal2 unique values
0 missing
MMRAcquisitionAuctionCleanPricenumeric1667 unique values
1 missing
MMRAcquisitionAuctionAveragePricenumeric1679 unique values
1 missing
MMRAcquisitionRetailAveragePricenumeric1702 unique values
1 missing
MMRAcquisitonRetailCleanPricenumeric1703 unique values
1 missing
MMRCurrentAuctionAveragePricenumeric1672 unique values
6 missing
MMRCurrentAuctionCleanPricenumeric1701 unique values
6 missing
MMRCurrentRetailAveragePricenumeric1730 unique values
6 missing
MMRCurrentRetailCleanPricenumeric1736 unique values
6 missing
PRIMEUNITnominal2 unique values
1911 missing
AUCGUARTnominal1 unique values
1911 missing
BYRNOnominal55 unique values
0 missing
VNZIP1nominal123 unique values
0 missing
VNSTnominal34 unique values
0 missing
VehBCostnumeric907 unique values
1 missing
IsOnlineSalenominal2 unique values
0 missing
WarrantyCostnumeric176 unique values
0 missing
PurchDatenumeric454 unique values
0 missing
TopThreeAmericanNamenominal4 unique values
1 missing
Sizenominal12 unique values
1 missing
Nationalitynominal4 unique values
1 missing
VehOdonumeric1965 unique values
0 missing
WheelTypenominal3 unique values
94 missing
WheelTypeIDnominal3 unique values
94 missing
Transmissionnominal2 unique values
0 missing
Colornominal16 unique values
0 missing
SubModelnominal306 unique values
0 missing
Trimnominal76 unique values
56 missing
Modelnominal376 unique values
0 missing
Makenominal26 unique values
0 missing
VehicleAgenumeric9 unique values
0 missing
VehYearnumeric9 unique values
0 missing
Auctionnominal3 unique values
0 missing

19 properties

2000
Number of instances (rows) of the dataset.
33
Number of attributes (columns) of the dataset.
2
Number of distinct values of the target attribute (if it is nominal).
4098
Number of missing values in the dataset.
1915
Number of instances with at least one value missing.
14
Number of numeric attributes.
19
Number of nominal attributes.
57.58
Percentage of nominal attributes.
0.79
Average class difference between consecutive instances.
42.42
Percentage of numeric attributes.
6.21
Percentage of missing values.
95.75
Percentage of instances having missing values.
12.12
Percentage of binary attributes.
4
Number of binary attributes.
246
Number of instances belonging to the least frequent class.
12.3
Percentage of instances belonging to the least frequent class.
1754
Number of instances belonging to the most frequent class.
87.7
Percentage of instances belonging to the most frequent class.
0.02
Number of attributes divided by the number of instances.

0 tasks

Define a new task