DEVELOPMENT... OpenML
Data
adult_seed_0_nrows_2000_nclasses_10_ncols_100_stratify_True

adult_seed_0_nrows_2000_nclasses_10_ncols_100_stratify_True

active ARFF Publicly available Visibility: public Uploaded 17-11-2022 by David Wilson
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Subsampling of the dataset adult (1590) with seed=0 args.nrows=2000 args.ncols=100 args.nclasses=10 args.no_stratify=True Generated with the following source code: ```python def subsample( self, seed: int, nrows_max: int = 2_000, ncols_max: int = 100, nclasses_max: int = 10, stratified: bool = True, ) -> Dataset: rng = np.random.default_rng(seed) x = self.x y = self.y # Uniformly sample classes = y.unique() if len(classes) > nclasses_max: vcs = y.value_counts() selected_classes = rng.choice( classes, size=nclasses_max, replace=False, p=vcs / sum(vcs), ) # Select the indices where one of these classes is present idxs = y.index[y.isin(classes)] x = x.iloc[idxs] y = y.iloc[idxs] # Uniformly sample columns if required if len(x.columns) > ncols_max: columns_idxs = rng.choice( list(range(len(x.columns))), size=ncols_max, replace=False ) sorted_column_idxs = sorted(columns_idxs) selected_columns = list(x.columns[sorted_column_idxs]) x = x[selected_columns] else: sorted_column_idxs = list(range(len(x.columns))) if len(x) > nrows_max: # Stratify accordingly target_name = y.name data = pd.concat((x, y), axis="columns") _, subset = train_test_split( data, test_size=nrows_max, stratify=data[target_name], shuffle=True, random_state=seed, ) x = subset.drop(target_name, axis="columns") y = subset[target_name] # We need to convert categorical columns to string for openml categorical_mask = [self.categorical_mask[i] for i in sorted_column_idxs] columns = list(x.columns) return Dataset( # Technically this is not the same but it's where it was derived from dataset=self.dataset, x=x, y=y, categorical_mask=categorical_mask, columns=columns, ) ```

15 features

class (target)nominal2 unique values
0 missing
agenumeric65 unique values
0 missing
workclassnominal7 unique values
104 missing
fnlwgtnumeric1919 unique values
0 missing
educationnominal16 unique values
0 missing
education-numnumeric16 unique values
0 missing
marital-statusnominal7 unique values
0 missing
occupationnominal14 unique values
105 missing
relationshipnominal6 unique values
0 missing
racenominal5 unique values
0 missing
sexnominal2 unique values
0 missing
capital-gainnumeric56 unique values
0 missing
capital-lossnumeric41 unique values
0 missing
hours-per-weeknumeric67 unique values
0 missing
native-countrynominal33 unique values
33 missing

19 properties

2000
Number of instances (rows) of the dataset.
15
Number of attributes (columns) of the dataset.
2
Number of distinct values of the target attribute (if it is nominal).
242
Number of missing values in the dataset.
135
Number of instances with at least one value missing.
6
Number of numeric attributes.
9
Number of nominal attributes.
60
Percentage of nominal attributes.
0.63
Average class difference between consecutive instances.
40
Percentage of numeric attributes.
0.81
Percentage of missing values.
6.75
Percentage of instances having missing values.
13.33
Percentage of binary attributes.
2
Number of binary attributes.
479
Number of instances belonging to the least frequent class.
23.95
Percentage of instances belonging to the least frequent class.
1521
Number of instances belonging to the most frequent class.
76.05
Percentage of instances belonging to the most frequent class.
0.01
Number of attributes divided by the number of instances.

0 tasks

Define a new task