DEVELOPMENT... OpenML
Data
Fashion-MNIST_seed_0_nrows_2000_nclasses_10_ncols_100_stratify_True

Fashion-MNIST_seed_0_nrows_2000_nclasses_10_ncols_100_stratify_True

active ARFF Publicly available Visibility: public Uploaded 17-11-2022 by David Wilson
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Subsampling of the dataset Fashion-MNIST (40996) with seed=0 args.nrows=2000 args.ncols=100 args.nclasses=10 args.no_stratify=True Generated with the following source code: ```python def subsample( self, seed: int, nrows_max: int = 2_000, ncols_max: int = 100, nclasses_max: int = 10, stratified: bool = True, ) -> Dataset: rng = np.random.default_rng(seed) x = self.x y = self.y # Uniformly sample classes = y.unique() if len(classes) > nclasses_max: vcs = y.value_counts() selected_classes = rng.choice( classes, size=nclasses_max, replace=False, p=vcs / sum(vcs), ) # Select the indices where one of these classes is present idxs = y.index[y.isin(classes)] x = x.iloc[idxs] y = y.iloc[idxs] # Uniformly sample columns if required if len(x.columns) > ncols_max: columns_idxs = rng.choice( list(range(len(x.columns))), size=ncols_max, replace=False ) sorted_column_idxs = sorted(columns_idxs) selected_columns = list(x.columns[sorted_column_idxs]) x = x[selected_columns] else: sorted_column_idxs = list(range(len(x.columns))) if len(x) > nrows_max: # Stratify accordingly target_name = y.name data = pd.concat((x, y), axis="columns") _, subset = train_test_split( data, test_size=nrows_max, stratify=data[target_name], shuffle=True, random_state=seed, ) x = subset.drop(target_name, axis="columns") y = subset[target_name] # We need to convert categorical columns to string for openml categorical_mask = [self.categorical_mask[i] for i in sorted_column_idxs] columns = list(x.columns) return Dataset( # Technically this is not the same but it's where it was derived from dataset=self.dataset, x=x, y=y, categorical_mask=categorical_mask, columns=columns, ) ```

101 features

class (target)nominal10 unique values
0 missing
pixel2numeric4 unique values
0 missing
pixel4numeric9 unique values
0 missing
pixel7numeric32 unique values
0 missing
pixel12numeric232 unique values
0 missing
pixel16numeric231 unique values
0 missing
pixel21numeric85 unique values
0 missing
pixel24numeric27 unique values
0 missing
pixel29numeric2 unique values
0 missing
pixel38numeric240 unique values
0 missing
pixel52numeric56 unique values
0 missing
pixel56numeric5 unique values
0 missing
pixel58numeric6 unique values
0 missing
pixel65numeric232 unique values
0 missing
pixel66numeric249 unique values
0 missing
pixel91numeric216 unique values
0 missing
pixel102numeric251 unique values
0 missing
pixel122numeric247 unique values
0 missing
pixel126numeric250 unique values
0 missing
pixel177numeric245 unique values
0 missing
pixel186numeric252 unique values
0 missing
pixel189numeric252 unique values
0 missing
pixel196numeric62 unique values
0 missing
pixel206numeric250 unique values
0 missing
pixel213numeric252 unique values
0 missing
pixel217numeric254 unique values
0 missing
pixel235numeric248 unique values
0 missing
pixel248numeric248 unique values
0 missing
pixel255numeric120 unique values
0 missing
pixel261numeric242 unique values
0 missing
pixel274numeric248 unique values
0 missing
pixel280numeric97 unique values
0 missing
pixel282numeric85 unique values
0 missing
pixel283numeric120 unique values
0 missing
pixel284numeric174 unique values
0 missing
pixel291numeric249 unique values
0 missing
pixel293numeric253 unique values
0 missing
pixel296numeric252 unique values
0 missing
pixel304numeric249 unique values
0 missing
pixel307numeric215 unique values
0 missing
pixel321numeric251 unique values
0 missing
pixel340numeric162 unique values
0 missing
pixel348numeric254 unique values
0 missing
pixel352numeric251 unique values
0 missing
pixel369numeric227 unique values
0 missing
pixel382numeric251 unique values
0 missing
pixel385numeric253 unique values
0 missing
pixel389numeric241 unique values
0 missing
pixel390numeric228 unique values
0 missing
pixel394numeric135 unique values
0 missing
pixel395numeric165 unique values
0 missing
pixel397numeric238 unique values
0 missing
pixel406numeric247 unique values
0 missing
pixel424numeric220 unique values
0 missing
pixel435numeric250 unique values
0 missing
pixel437numeric251 unique values
0 missing
pixel438numeric248 unique values
0 missing
pixel444numeric251 unique values
0 missing
pixel452numeric222 unique values
0 missing
pixel458numeric254 unique values
0 missing
pixel474numeric232 unique values
0 missing
pixel475numeric227 unique values
0 missing
pixel484numeric253 unique values
0 missing
pixel487numeric254 unique values
0 missing
pixel490numeric252 unique values
0 missing
pixel509numeric245 unique values
0 missing
pixel511numeric254 unique values
0 missing
pixel514numeric254 unique values
0 missing
pixel515numeric252 unique values
0 missing
pixel521numeric255 unique values
0 missing
pixel526numeric254 unique values
0 missing
pixel543numeric253 unique values
0 missing
pixel546numeric253 unique values
0 missing
pixel554numeric251 unique values
0 missing
pixel557numeric245 unique values
0 missing
pixel562numeric182 unique values
0 missing
pixel565numeric247 unique values
0 missing
pixel576numeric250 unique values
0 missing
pixel583numeric252 unique values
0 missing
pixel588numeric124 unique values
0 missing
pixel595numeric249 unique values
0 missing
pixel606numeric252 unique values
0 missing
pixel609numeric253 unique values
0 missing
pixel620numeric214 unique values
0 missing
pixel627numeric251 unique values
0 missing
pixel636numeric251 unique values
0 missing
pixel637numeric248 unique values
0 missing
pixel653numeric252 unique values
0 missing
pixel656numeric253 unique values
0 missing
pixel659numeric248 unique values
0 missing
pixel677numeric242 unique values
0 missing
pixel679numeric241 unique values
0 missing
pixel691numeric248 unique values
0 missing
pixel697numeric210 unique values
0 missing
pixel706numeric233 unique values
0 missing
pixel712numeric248 unique values
0 missing
pixel726numeric149 unique values
0 missing
pixel734numeric215 unique values
0 missing
pixel736numeric242 unique values
0 missing
pixel759numeric32 unique values
0 missing
pixel767numeric225 unique values
0 missing

19 properties

2000
Number of instances (rows) of the dataset.
101
Number of attributes (columns) of the dataset.
10
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
100
Number of numeric attributes.
1
Number of nominal attributes.
0.99
Percentage of nominal attributes.
0.1
Average class difference between consecutive instances.
99.01
Percentage of numeric attributes.
0
Percentage of missing values.
0
Percentage of instances having missing values.
0
Percentage of binary attributes.
0
Number of binary attributes.
200
Number of instances belonging to the least frequent class.
10
Percentage of instances belonging to the least frequent class.
200
Number of instances belonging to the most frequent class.
10
Percentage of instances belonging to the most frequent class.
0.05
Number of attributes divided by the number of instances.

0 tasks

Define a new task