DEVELOPMENT... OpenML
Data
Satellite_seed_3_nrows_2000_nclasses_10_ncols_100_stratify_True

Satellite_seed_3_nrows_2000_nclasses_10_ncols_100_stratify_True

active ARFF Publicly available Visibility: public Uploaded 17-11-2022 by David Wilson
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Subsampling of the dataset Satellite (40900) with seed=3 args.nrows=2000 args.ncols=100 args.nclasses=10 args.no_stratify=True Generated with the following source code: ```python def subsample( self, seed: int, nrows_max: int = 2_000, ncols_max: int = 100, nclasses_max: int = 10, stratified: bool = True, ) -> Dataset: rng = np.random.default_rng(seed) x = self.x y = self.y # Uniformly sample classes = y.unique() if len(classes) > nclasses_max: vcs = y.value_counts() selected_classes = rng.choice( classes, size=nclasses_max, replace=False, p=vcs / sum(vcs), ) # Select the indices where one of these classes is present idxs = y.index[y.isin(classes)] x = x.iloc[idxs] y = y.iloc[idxs] # Uniformly sample columns if required if len(x.columns) > ncols_max: columns_idxs = rng.choice( list(range(len(x.columns))), size=ncols_max, replace=False ) sorted_column_idxs = sorted(columns_idxs) selected_columns = list(x.columns[sorted_column_idxs]) x = x[selected_columns] else: sorted_column_idxs = list(range(len(x.columns))) if len(x) > nrows_max: # Stratify accordingly target_name = y.name data = pd.concat((x, y), axis="columns") _, subset = train_test_split( data, test_size=nrows_max, stratify=data[target_name], shuffle=True, random_state=seed, ) x = subset.drop(target_name, axis="columns") y = subset[target_name] # We need to convert categorical columns to string for openml categorical_mask = [self.categorical_mask[i] for i in sorted_column_idxs] columns = list(x.columns) return Dataset( # Technically this is not the same but it's where it was derived from dataset=self.dataset, x=x, y=y, categorical_mask=categorical_mask, columns=columns, ) ```

37 features

Target (target)nominal2 unique values
0 missing
V20numeric64 unique values
0 missing
V19numeric64 unique values
0 missing
V21numeric45 unique values
0 missing
V22numeric65 unique values
0 missing
V23numeric65 unique values
0 missing
V24numeric65 unique values
0 missing
V25numeric45 unique values
0 missing
V26numeric69 unique values
0 missing
V27numeric66 unique values
0 missing
V28numeric68 unique values
0 missing
V29numeric46 unique values
0 missing
V30numeric70 unique values
0 missing
V31numeric65 unique values
0 missing
V32numeric67 unique values
0 missing
V33numeric47 unique values
0 missing
V34numeric69 unique values
0 missing
V35numeric63 unique values
0 missing
V36numeric66 unique values
0 missing
V10numeric69 unique values
0 missing
V2numeric69 unique values
0 missing
V3numeric65 unique values
0 missing
V4numeric64 unique values
0 missing
V5numeric47 unique values
0 missing
V6numeric67 unique values
0 missing
V7numeric67 unique values
0 missing
V8numeric61 unique values
0 missing
V9numeric46 unique values
0 missing
V1numeric47 unique values
0 missing
V11numeric65 unique values
0 missing
V12numeric66 unique values
0 missing
V13numeric46 unique values
0 missing
V14numeric69 unique values
0 missing
V15numeric64 unique values
0 missing
V16numeric63 unique values
0 missing
V17numeric45 unique values
0 missing
V18numeric64 unique values
0 missing

19 properties

2000
Number of instances (rows) of the dataset.
37
Number of attributes (columns) of the dataset.
2
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
36
Number of numeric attributes.
1
Number of nominal attributes.
2.7
Percentage of nominal attributes.
0.97
Average class difference between consecutive instances.
97.3
Percentage of numeric attributes.
0
Percentage of missing values.
0
Percentage of instances having missing values.
2.7
Percentage of binary attributes.
1
Number of binary attributes.
29
Number of instances belonging to the least frequent class.
1.45
Percentage of instances belonging to the least frequent class.
1971
Number of instances belonging to the most frequent class.
98.55
Percentage of instances belonging to the most frequent class.
0.02
Number of attributes divided by the number of instances.

0 tasks

Define a new task