DEVELOPMENT... OpenML
Data
GesturePhaseSegmentationProcessed_seed_2_nrows_2000_nclasses_10_ncols_100_stratify_True

GesturePhaseSegmentationProcessed_seed_2_nrows_2000_nclasses_10_ncols_100_stratify_True

active ARFF Publicly available Visibility: public Uploaded 17-11-2022 by David Wilson
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Subsampling of the dataset GesturePhaseSegmentationProcessed (4538) with seed=2 args.nrows=2000 args.ncols=100 args.nclasses=10 args.no_stratify=True Generated with the following source code: ```python def subsample( self, seed: int, nrows_max: int = 2_000, ncols_max: int = 100, nclasses_max: int = 10, stratified: bool = True, ) -> Dataset: rng = np.random.default_rng(seed) x = self.x y = self.y # Uniformly sample classes = y.unique() if len(classes) > nclasses_max: vcs = y.value_counts() selected_classes = rng.choice( classes, size=nclasses_max, replace=False, p=vcs / sum(vcs), ) # Select the indices where one of these classes is present idxs = y.index[y.isin(classes)] x = x.iloc[idxs] y = y.iloc[idxs] # Uniformly sample columns if required if len(x.columns) > ncols_max: columns_idxs = rng.choice( list(range(len(x.columns))), size=ncols_max, replace=False ) sorted_column_idxs = sorted(columns_idxs) selected_columns = list(x.columns[sorted_column_idxs]) x = x[selected_columns] else: sorted_column_idxs = list(range(len(x.columns))) if len(x) > nrows_max: # Stratify accordingly target_name = y.name data = pd.concat((x, y), axis="columns") _, subset = train_test_split( data, test_size=nrows_max, stratify=data[target_name], shuffle=True, random_state=seed, ) x = subset.drop(target_name, axis="columns") y = subset[target_name] # We need to convert categorical columns to string for openml categorical_mask = [self.categorical_mask[i] for i in sorted_column_idxs] columns = list(x.columns) return Dataset( # Technically this is not the same but it's where it was derived from dataset=self.dataset, x=x, y=y, categorical_mask=categorical_mask, columns=columns, ) ```

33 features

Phase (target)nominal5 unique values
0 missing
X18numeric1938 unique values
0 missing
X17numeric1981 unique values
0 missing
X19numeric1976 unique values
0 missing
X20numeric1987 unique values
0 missing
X21numeric1914 unique values
0 missing
X22numeric1993 unique values
0 missing
X23numeric1984 unique values
0 missing
X24numeric1936 unique values
0 missing
X25numeric1998 unique values
0 missing
X26numeric1998 unique values
0 missing
X27numeric1995 unique values
0 missing
X28numeric1997 unique values
0 missing
X29numeric1988 unique values
0 missing
X30numeric1988 unique values
0 missing
X31numeric1984 unique values
0 missing
X32numeric1986 unique values
0 missing
X1numeric1999 unique values
0 missing
X16numeric1989 unique values
0 missing
X15numeric1926 unique values
0 missing
X14numeric1986 unique values
0 missing
X13numeric1983 unique values
0 missing
X12numeric1995 unique values
0 missing
X11numeric1999 unique values
0 missing
X10numeric1997 unique values
0 missing
X9numeric1994 unique values
0 missing
X8numeric1997 unique values
0 missing
X7numeric1998 unique values
0 missing
X6numeric1989 unique values
0 missing
X5numeric2000 unique values
0 missing
X4numeric1998 unique values
0 missing
X3numeric1994 unique values
0 missing
X2numeric1999 unique values
0 missing

19 properties

2000
Number of instances (rows) of the dataset.
33
Number of attributes (columns) of the dataset.
5
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
32
Number of numeric attributes.
1
Number of nominal attributes.
3.03
Percentage of nominal attributes.
0.24
Average class difference between consecutive instances.
96.97
Percentage of numeric attributes.
0
Percentage of missing values.
0
Percentage of instances having missing values.
0
Percentage of binary attributes.
0
Number of binary attributes.
202
Number of instances belonging to the least frequent class.
10.1
Percentage of instances belonging to the least frequent class.
598
Number of instances belonging to the most frequent class.
29.9
Percentage of instances belonging to the most frequent class.
0.02
Number of attributes divided by the number of instances.

0 tasks

Define a new task