DEVELOPMENT... OpenML
Data
first-order-theorem-proving_seed_3_nrows_2000_nclasses_10_ncols_100_stratify_True

first-order-theorem-proving_seed_3_nrows_2000_nclasses_10_ncols_100_stratify_True

active ARFF Publicly available Visibility: public Uploaded 17-11-2022 by David Wilson
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Subsampling of the dataset first-order-theorem-proving (1475) with seed=3 args.nrows=2000 args.ncols=100 args.nclasses=10 args.no_stratify=True Generated with the following source code: ```python def subsample( self, seed: int, nrows_max: int = 2_000, ncols_max: int = 100, nclasses_max: int = 10, stratified: bool = True, ) -> Dataset: rng = np.random.default_rng(seed) x = self.x y = self.y # Uniformly sample classes = y.unique() if len(classes) > nclasses_max: vcs = y.value_counts() selected_classes = rng.choice( classes, size=nclasses_max, replace=False, p=vcs / sum(vcs), ) # Select the indices where one of these classes is present idxs = y.index[y.isin(classes)] x = x.iloc[idxs] y = y.iloc[idxs] # Uniformly sample columns if required if len(x.columns) > ncols_max: columns_idxs = rng.choice( list(range(len(x.columns))), size=ncols_max, replace=False ) sorted_column_idxs = sorted(columns_idxs) selected_columns = list(x.columns[sorted_column_idxs]) x = x[selected_columns] else: sorted_column_idxs = list(range(len(x.columns))) if len(x) > nrows_max: # Stratify accordingly target_name = y.name data = pd.concat((x, y), axis="columns") _, subset = train_test_split( data, test_size=nrows_max, stratify=data[target_name], shuffle=True, random_state=seed, ) x = subset.drop(target_name, axis="columns") y = subset[target_name] # We need to convert categorical columns to string for openml categorical_mask = [self.categorical_mask[i] for i in sorted_column_idxs] columns = list(x.columns) return Dataset( # Technically this is not the same but it's where it was derived from dataset=self.dataset, x=x, y=y, categorical_mask=categorical_mask, columns=columns, ) ```

52 features

Class (target)nominal6 unique values
0 missing
V28numeric542 unique values
0 missing
V27numeric1688 unique values
0 missing
V29numeric1781 unique values
0 missing
V30numeric61 unique values
0 missing
V31numeric70 unique values
0 missing
V32numeric80 unique values
0 missing
V33numeric16 unique values
0 missing
V34numeric24 unique values
0 missing
V35numeric40 unique values
0 missing
V36numeric49 unique values
0 missing
V37numeric654 unique values
0 missing
V38numeric933 unique values
0 missing
V39numeric592 unique values
0 missing
V40numeric45 unique values
0 missing
V41numeric665 unique values
0 missing
V42numeric25 unique values
0 missing
V43numeric22 unique values
0 missing
V44numeric758 unique values
0 missing
V45numeric945 unique values
0 missing
V46numeric871 unique values
0 missing
V47numeric741 unique values
0 missing
V48numeric770 unique values
0 missing
V49numeric1011 unique values
0 missing
V50numeric713 unique values
0 missing
V51numeric1063 unique values
0 missing
V14numeric80 unique values
0 missing
V2numeric595 unique values
0 missing
V3numeric608 unique values
0 missing
V4numeric657 unique values
0 missing
V5numeric733 unique values
0 missing
V6numeric524 unique values
0 missing
V7numeric653 unique values
0 missing
V8numeric38 unique values
0 missing
V9numeric844 unique values
0 missing
V10numeric19 unique values
0 missing
V11numeric1129 unique values
0 missing
V12numeric149 unique values
0 missing
V13numeric1327 unique values
0 missing
V1numeric652 unique values
0 missing
V15numeric1789 unique values
0 missing
V16numeric1361 unique values
0 missing
V17numeric1006 unique values
0 missing
V18numeric85 unique values
0 missing
V19numeric1325 unique values
0 missing
V20numeric77 unique values
0 missing
V21numeric1456 unique values
0 missing
V22numeric75 unique values
0 missing
V23numeric1580 unique values
0 missing
V24numeric96 unique values
0 missing
V25numeric1677 unique values
0 missing
V26numeric423 unique values
0 missing

19 properties

2000
Number of instances (rows) of the dataset.
52
Number of attributes (columns) of the dataset.
6
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
51
Number of numeric attributes.
1
Number of nominal attributes.
1.92
Percentage of nominal attributes.
0.25
Average class difference between consecutive instances.
98.08
Percentage of numeric attributes.
0
Percentage of missing values.
0
Percentage of instances having missing values.
0
Percentage of binary attributes.
0
Number of binary attributes.
159
Number of instances belonging to the least frequent class.
7.95
Percentage of instances belonging to the least frequent class.
835
Number of instances belonging to the most frequent class.
41.75
Percentage of instances belonging to the most frequent class.
0.03
Number of attributes divided by the number of instances.

0 tasks

Define a new task

A PHP Error was encountered

Severity: Core Warning

Message: Module 'mysqli' already loaded

Filename: Unknown

Line Number: 0

Backtrace: