DEVELOPMENT... OpenML
Data
first-order-theorem-proving_seed_2_nrows_2000_nclasses_10_ncols_100_stratify_True

first-order-theorem-proving_seed_2_nrows_2000_nclasses_10_ncols_100_stratify_True

active ARFF Publicly available Visibility: public Uploaded 17-11-2022 by David Wilson
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Subsampling of the dataset first-order-theorem-proving (1475) with seed=2 args.nrows=2000 args.ncols=100 args.nclasses=10 args.no_stratify=True Generated with the following source code: ```python def subsample( self, seed: int, nrows_max: int = 2_000, ncols_max: int = 100, nclasses_max: int = 10, stratified: bool = True, ) -> Dataset: rng = np.random.default_rng(seed) x = self.x y = self.y # Uniformly sample classes = y.unique() if len(classes) > nclasses_max: vcs = y.value_counts() selected_classes = rng.choice( classes, size=nclasses_max, replace=False, p=vcs / sum(vcs), ) # Select the indices where one of these classes is present idxs = y.index[y.isin(classes)] x = x.iloc[idxs] y = y.iloc[idxs] # Uniformly sample columns if required if len(x.columns) > ncols_max: columns_idxs = rng.choice( list(range(len(x.columns))), size=ncols_max, replace=False ) sorted_column_idxs = sorted(columns_idxs) selected_columns = list(x.columns[sorted_column_idxs]) x = x[selected_columns] else: sorted_column_idxs = list(range(len(x.columns))) if len(x) > nrows_max: # Stratify accordingly target_name = y.name data = pd.concat((x, y), axis="columns") _, subset = train_test_split( data, test_size=nrows_max, stratify=data[target_name], shuffle=True, random_state=seed, ) x = subset.drop(target_name, axis="columns") y = subset[target_name] # We need to convert categorical columns to string for openml categorical_mask = [self.categorical_mask[i] for i in sorted_column_idxs] columns = list(x.columns) return Dataset( # Technically this is not the same but it's where it was derived from dataset=self.dataset, x=x, y=y, categorical_mask=categorical_mask, columns=columns, ) ```

52 features

Class (target)nominal6 unique values
0 missing
V28numeric535 unique values
0 missing
V27numeric1728 unique values
0 missing
V29numeric1781 unique values
0 missing
V30numeric61 unique values
0 missing
V31numeric73 unique values
0 missing
V32numeric78 unique values
0 missing
V33numeric15 unique values
0 missing
V34numeric20 unique values
0 missing
V35numeric41 unique values
0 missing
V36numeric52 unique values
0 missing
V37numeric649 unique values
0 missing
V38numeric932 unique values
0 missing
V39numeric592 unique values
0 missing
V40numeric48 unique values
0 missing
V41numeric648 unique values
0 missing
V42numeric24 unique values
0 missing
V43numeric23 unique values
0 missing
V44numeric781 unique values
0 missing
V45numeric993 unique values
0 missing
V46numeric898 unique values
0 missing
V47numeric770 unique values
0 missing
V48numeric782 unique values
0 missing
V49numeric1050 unique values
0 missing
V50numeric714 unique values
0 missing
V51numeric1094 unique values
0 missing
V14numeric78 unique values
0 missing
V2numeric629 unique values
0 missing
V3numeric637 unique values
0 missing
V4numeric694 unique values
0 missing
V5numeric750 unique values
0 missing
V6numeric569 unique values
0 missing
V7numeric687 unique values
0 missing
V8numeric41 unique values
0 missing
V9numeric891 unique values
0 missing
V10numeric19 unique values
0 missing
V11numeric1149 unique values
0 missing
V12numeric158 unique values
0 missing
V13numeric1391 unique values
0 missing
V1numeric697 unique values
0 missing
V15numeric1800 unique values
0 missing
V16numeric1377 unique values
0 missing
V17numeric968 unique values
0 missing
V18numeric92 unique values
0 missing
V19numeric1371 unique values
0 missing
V20numeric76 unique values
0 missing
V21numeric1493 unique values
0 missing
V22numeric76 unique values
0 missing
V23numeric1618 unique values
0 missing
V24numeric93 unique values
0 missing
V25numeric1660 unique values
0 missing
V26numeric455 unique values
0 missing

19 properties

2000
Number of instances (rows) of the dataset.
52
Number of attributes (columns) of the dataset.
6
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
51
Number of numeric attributes.
1
Number of nominal attributes.
1.92
Percentage of nominal attributes.
0.26
Average class difference between consecutive instances.
98.08
Percentage of numeric attributes.
0
Percentage of missing values.
0
Percentage of instances having missing values.
0
Percentage of binary attributes.
0
Number of binary attributes.
159
Number of instances belonging to the least frequent class.
7.95
Percentage of instances belonging to the least frequent class.
835
Number of instances belonging to the most frequent class.
41.75
Percentage of instances belonging to the most frequent class.
0.03
Number of attributes divided by the number of instances.

0 tasks

Define a new task