DEVELOPMENT... OpenML
Data
segment_seed_3_nrows_2000_nclasses_10_ncols_100_stratify_True

segment_seed_3_nrows_2000_nclasses_10_ncols_100_stratify_True

active ARFF Publicly available Visibility: public Uploaded 17-11-2022 by David Wilson
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Subsampling of the dataset segment (40984) with seed=3 args.nrows=2000 args.ncols=100 args.nclasses=10 args.no_stratify=True Generated with the following source code: ```python def subsample( self, seed: int, nrows_max: int = 2_000, ncols_max: int = 100, nclasses_max: int = 10, stratified: bool = True, ) -> Dataset: rng = np.random.default_rng(seed) x = self.x y = self.y # Uniformly sample classes = y.unique() if len(classes) > nclasses_max: vcs = y.value_counts() selected_classes = rng.choice( classes, size=nclasses_max, replace=False, p=vcs / sum(vcs), ) # Select the indices where one of these classes is present idxs = y.index[y.isin(classes)] x = x.iloc[idxs] y = y.iloc[idxs] # Uniformly sample columns if required if len(x.columns) > ncols_max: columns_idxs = rng.choice( list(range(len(x.columns))), size=ncols_max, replace=False ) sorted_column_idxs = sorted(columns_idxs) selected_columns = list(x.columns[sorted_column_idxs]) x = x[selected_columns] else: sorted_column_idxs = list(range(len(x.columns))) if len(x) > nrows_max: # Stratify accordingly target_name = y.name data = pd.concat((x, y), axis="columns") _, subset = train_test_split( data, test_size=nrows_max, stratify=data[target_name], shuffle=True, random_state=seed, ) x = subset.drop(target_name, axis="columns") y = subset[target_name] # We need to convert categorical columns to string for openml categorical_mask = [self.categorical_mask[i] for i in sorted_column_idxs] columns = list(x.columns) return Dataset( # Technically this is not the same but it's where it was derived from dataset=self.dataset, x=x, y=y, categorical_mask=categorical_mask, columns=columns, ) ```

17 features

class (target)nominal7 unique values
0 missing
rawblue.meannumeric746 unique values
0 missing
hue.meannumeric1692 unique values
0 missing
saturation.meannumeric1667 unique values
0 missing
value.meannumeric749 unique values
0 missing
exgreen.meannumeric369 unique values
0 missing
exblue.meannumeric613 unique values
0 missing
exred.meannumeric418 unique values
0 missing
rawgreen.meannumeric653 unique values
0 missing
short.line.density.5numeric4 unique values
0 missing
rawred.meannumeric645 unique values
0 missing
intensity.meannumeric1163 unique values
0 missing
hedge.sdnumeric1065 unique values
0 missing
hedge.meannumeric248 unique values
0 missing
vegde.sdnumeric992 unique values
0 missing
vedge.meannumeric221 unique values
0 missing
short.line.density.2numeric3 unique values
0 missing

19 properties

2000
Number of instances (rows) of the dataset.
17
Number of attributes (columns) of the dataset.
7
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
16
Number of numeric attributes.
1
Number of nominal attributes.
5.88
Percentage of nominal attributes.
0.14
Average class difference between consecutive instances.
94.12
Percentage of numeric attributes.
0
Percentage of missing values.
0
Percentage of instances having missing values.
0
Percentage of binary attributes.
0
Number of binary attributes.
285
Number of instances belonging to the least frequent class.
14.25
Percentage of instances belonging to the least frequent class.
286
Number of instances belonging to the most frequent class.
14.3
Percentage of instances belonging to the most frequent class.
0.01
Number of attributes divided by the number of instances.

0 tasks

Define a new task