DEVELOPMENT... OpenML
Data
kc1_seed_0_nrows_2000_nclasses_10_ncols_100_stratify_True

kc1_seed_0_nrows_2000_nclasses_10_ncols_100_stratify_True

active ARFF Publicly available Visibility: public Uploaded 17-11-2022 by David Wilson
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Subsampling of the dataset kc1 (1067) with seed=0 args.nrows=2000 args.ncols=100 args.nclasses=10 args.no_stratify=True Generated with the following source code: ```python def subsample( self, seed: int, nrows_max: int = 2_000, ncols_max: int = 100, nclasses_max: int = 10, stratified: bool = True, ) -> Dataset: rng = np.random.default_rng(seed) x = self.x y = self.y # Uniformly sample classes = y.unique() if len(classes) > nclasses_max: vcs = y.value_counts() selected_classes = rng.choice( classes, size=nclasses_max, replace=False, p=vcs / sum(vcs), ) # Select the indices where one of these classes is present idxs = y.index[y.isin(classes)] x = x.iloc[idxs] y = y.iloc[idxs] # Uniformly sample columns if required if len(x.columns) > ncols_max: columns_idxs = rng.choice( list(range(len(x.columns))), size=ncols_max, replace=False ) sorted_column_idxs = sorted(columns_idxs) selected_columns = list(x.columns[sorted_column_idxs]) x = x[selected_columns] else: sorted_column_idxs = list(range(len(x.columns))) if len(x) > nrows_max: # Stratify accordingly target_name = y.name data = pd.concat((x, y), axis="columns") _, subset = train_test_split( data, test_size=nrows_max, stratify=data[target_name], shuffle=True, random_state=seed, ) x = subset.drop(target_name, axis="columns") y = subset[target_name] # We need to convert categorical columns to string for openml categorical_mask = [self.categorical_mask[i] for i in sorted_column_idxs] columns = list(x.columns) return Dataset( # Technically this is not the same but it's where it was derived from dataset=self.dataset, x=x, y=y, categorical_mask=categorical_mask, columns=columns, ) ```

22 features

defects (target)nominal2 unique values
0 missing
tnumeric900 unique values
0 missing
branchCountnumeric43 unique values
0 missing
total_Opndnumeric148 unique values
0 missing
total_Opnumeric202 unique values
0 missing
uniq_Opndnumeric72 unique values
0 missing
uniq_Opnumeric34 unique values
0 missing
locCodeAndCommentnumeric12 unique values
0 missing
lOBlanknumeric31 unique values
0 missing
lOCommentnumeric28 unique values
0 missing
lOCodenumeric120 unique values
0 missing
locnumeric137 unique values
0 missing
bnumeric88 unique values
0 missing
enumeric913 unique values
0 missing
inumeric850 unique values
0 missing
dnumeric524 unique values
0 missing
lnumeric52 unique values
0 missing
vnumeric696 unique values
0 missing
nnumeric270 unique values
0 missing
iv(g)numeric26 unique values
0 missing
ev(g)numeric21 unique values
0 missing
v(g)numeric30 unique values
0 missing

19 properties

2000
Number of instances (rows) of the dataset.
22
Number of attributes (columns) of the dataset.
2
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
21
Number of numeric attributes.
1
Number of nominal attributes.
4.55
Percentage of nominal attributes.
0.73
Average class difference between consecutive instances.
95.45
Percentage of numeric attributes.
0
Percentage of missing values.
0
Percentage of instances having missing values.
4.55
Percentage of binary attributes.
1
Number of binary attributes.
309
Number of instances belonging to the least frequent class.
15.45
Percentage of instances belonging to the least frequent class.
1691
Number of instances belonging to the most frequent class.
84.55
Percentage of instances belonging to the most frequent class.
0.01
Number of attributes divided by the number of instances.

0 tasks

Define a new task