DEVELOPMENT... OpenML
Data
cmc_seed_0_nrows_2000_nclasses_10_ncols_100_stratify_True

cmc_seed_0_nrows_2000_nclasses_10_ncols_100_stratify_True

active ARFF Publicly available Visibility: public Uploaded 17-11-2022 by David Wilson
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Subsampling of the dataset cmc (23) with seed=0 args.nrows=2000 args.ncols=100 args.nclasses=10 args.no_stratify=True Generated with the following source code: ```python def subsample( self, seed: int, nrows_max: int = 2_000, ncols_max: int = 100, nclasses_max: int = 10, stratified: bool = True, ) -> Dataset: rng = np.random.default_rng(seed) x = self.x y = self.y # Uniformly sample classes = y.unique() if len(classes) > nclasses_max: vcs = y.value_counts() selected_classes = rng.choice( classes, size=nclasses_max, replace=False, p=vcs / sum(vcs), ) # Select the indices where one of these classes is present idxs = y.index[y.isin(classes)] x = x.iloc[idxs] y = y.iloc[idxs] # Uniformly sample columns if required if len(x.columns) > ncols_max: columns_idxs = rng.choice( list(range(len(x.columns))), size=ncols_max, replace=False ) sorted_column_idxs = sorted(columns_idxs) selected_columns = list(x.columns[sorted_column_idxs]) x = x[selected_columns] else: sorted_column_idxs = list(range(len(x.columns))) if len(x) > nrows_max: # Stratify accordingly target_name = y.name data = pd.concat((x, y), axis="columns") _, subset = train_test_split( data, test_size=nrows_max, stratify=data[target_name], shuffle=True, random_state=seed, ) x = subset.drop(target_name, axis="columns") y = subset[target_name] # We need to convert categorical columns to string for openml categorical_mask = [self.categorical_mask[i] for i in sorted_column_idxs] columns = list(x.columns) return Dataset( # Technically this is not the same but it's where it was derived from dataset=self.dataset, x=x, y=y, categorical_mask=categorical_mask, columns=columns, ) ```

10 features

Contraceptive_method_used (target)nominal3 unique values
0 missing
Wifes_agenumeric34 unique values
0 missing
Wifes_educationnominal4 unique values
0 missing
Husbands_educationnominal4 unique values
0 missing
Number_of_children_ever_bornnumeric15 unique values
0 missing
Wifes_religionnominal2 unique values
0 missing
Wifes_now_working%3Fnominal2 unique values
0 missing
Husbands_occupationnominal4 unique values
0 missing
Standard-of-living_indexnominal4 unique values
0 missing
Media_exposurenominal2 unique values
0 missing

19 properties

1473
Number of instances (rows) of the dataset.
10
Number of attributes (columns) of the dataset.
3
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
2
Number of numeric attributes.
8
Number of nominal attributes.
80
Percentage of nominal attributes.
1
Average class difference between consecutive instances.
20
Percentage of numeric attributes.
0
Percentage of missing values.
0
Percentage of instances having missing values.
30
Percentage of binary attributes.
3
Number of binary attributes.
333
Number of instances belonging to the least frequent class.
22.61
Percentage of instances belonging to the least frequent class.
629
Number of instances belonging to the most frequent class.
42.7
Percentage of instances belonging to the most frequent class.
0.01
Number of attributes divided by the number of instances.

0 tasks

Define a new task