DEVELOPMENT... OpenML
Data
eucalyptus_seed_4_nrows_2000_nclasses_10_ncols_100_stratify_True

eucalyptus_seed_4_nrows_2000_nclasses_10_ncols_100_stratify_True

active ARFF Publicly available Visibility: public Uploaded 17-11-2022 by David Wilson
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Subsampling of the dataset eucalyptus (188) with seed=4 args.nrows=2000 args.ncols=100 args.nclasses=10 args.no_stratify=True Generated with the following source code: ```python def subsample( self, seed: int, nrows_max: int = 2_000, ncols_max: int = 100, nclasses_max: int = 10, stratified: bool = True, ) -> Dataset: rng = np.random.default_rng(seed) x = self.x y = self.y # Uniformly sample classes = y.unique() if len(classes) > nclasses_max: vcs = y.value_counts() selected_classes = rng.choice( classes, size=nclasses_max, replace=False, p=vcs / sum(vcs), ) # Select the indices where one of these classes is present idxs = y.index[y.isin(classes)] x = x.iloc[idxs] y = y.iloc[idxs] # Uniformly sample columns if required if len(x.columns) > ncols_max: columns_idxs = rng.choice( list(range(len(x.columns))), size=ncols_max, replace=False ) sorted_column_idxs = sorted(columns_idxs) selected_columns = list(x.columns[sorted_column_idxs]) x = x[selected_columns] else: sorted_column_idxs = list(range(len(x.columns))) if len(x) > nrows_max: # Stratify accordingly target_name = y.name data = pd.concat((x, y), axis="columns") _, subset = train_test_split( data, test_size=nrows_max, stratify=data[target_name], shuffle=True, random_state=seed, ) x = subset.drop(target_name, axis="columns") y = subset[target_name] # We need to convert categorical columns to string for openml categorical_mask = [self.categorical_mask[i] for i in sorted_column_idxs] columns = list(x.columns) return Dataset( # Technically this is not the same but it's where it was derived from dataset=self.dataset, x=x, y=y, categorical_mask=categorical_mask, columns=columns, ) ```

20 features

Utility (target)nominal5 unique values
0 missing
PMCnonumeric85 unique values
7 missing
Brnch_Fmnumeric28 unique values
69 missing
Crown_Fmnumeric29 unique values
69 missing
Stem_Fmnumeric26 unique values
69 missing
Ins_resnumeric28 unique values
69 missing
Vignumeric33 unique values
69 missing
Survnumeric47 unique values
94 missing
Htnumeric531 unique values
1 missing
DBHnumeric603 unique values
1 missing
Abbrevnominal16 unique values
0 missing
Spnominal27 unique values
0 missing
Yearnumeric5 unique values
0 missing
Frostsnumeric2 unique values
0 missing
Rainfallnumeric10 unique values
0 missing
Altitudenumeric9 unique values
0 missing
Latitudenominal12 unique values
0 missing
Map_Refnominal14 unique values
0 missing
Localitynominal8 unique values
0 missing
Repnumeric4 unique values
0 missing

19 properties

736
Number of instances (rows) of the dataset.
20
Number of attributes (columns) of the dataset.
5
Number of distinct values of the target attribute (if it is nominal).
448
Number of missing values in the dataset.
95
Number of instances with at least one value missing.
14
Number of numeric attributes.
6
Number of nominal attributes.
30
Percentage of nominal attributes.
0.39
Average class difference between consecutive instances.
70
Percentage of numeric attributes.
3.04
Percentage of missing values.
12.91
Percentage of instances having missing values.
0
Percentage of binary attributes.
0
Number of binary attributes.
105
Number of instances belonging to the least frequent class.
14.27
Percentage of instances belonging to the least frequent class.
214
Number of instances belonging to the most frequent class.
29.08
Percentage of instances belonging to the most frequent class.
0.03
Number of attributes divided by the number of instances.

0 tasks

Define a new task