DEVELOPMENT... OpenML
Data
Diabetes130US_seed_3_nrows_2000_nclasses_10_ncols_100_stratify_True

Diabetes130US_seed_3_nrows_2000_nclasses_10_ncols_100_stratify_True

active ARFF Publicly available Visibility: public Uploaded 17-11-2022 by David Wilson
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Subsampling of the dataset Diabetes130US (4541) with seed=3 args.nrows=2000 args.ncols=100 args.nclasses=10 args.no_stratify=True Generated with the following source code: ```python def subsample( self, seed: int, nrows_max: int = 2_000, ncols_max: int = 100, nclasses_max: int = 10, stratified: bool = True, ) -> Dataset: rng = np.random.default_rng(seed) x = self.x y = self.y # Uniformly sample classes = y.unique() if len(classes) > nclasses_max: vcs = y.value_counts() selected_classes = rng.choice( classes, size=nclasses_max, replace=False, p=vcs / sum(vcs), ) # Select the indices where one of these classes is present idxs = y.index[y.isin(classes)] x = x.iloc[idxs] y = y.iloc[idxs] # Uniformly sample columns if required if len(x.columns) > ncols_max: columns_idxs = rng.choice( list(range(len(x.columns))), size=ncols_max, replace=False ) sorted_column_idxs = sorted(columns_idxs) selected_columns = list(x.columns[sorted_column_idxs]) x = x[selected_columns] else: sorted_column_idxs = list(range(len(x.columns))) if len(x) > nrows_max: # Stratify accordingly target_name = y.name data = pd.concat((x, y), axis="columns") _, subset = train_test_split( data, test_size=nrows_max, stratify=data[target_name], shuffle=True, random_state=seed, ) x = subset.drop(target_name, axis="columns") y = subset[target_name] # We need to convert categorical columns to string for openml categorical_mask = [self.categorical_mask[i] for i in sorted_column_idxs] columns = list(x.columns) return Dataset( # Technically this is not the same but it's where it was derived from dataset=self.dataset, x=x, y=y, categorical_mask=categorical_mask, columns=columns, ) ```

50 features

readmitted (target)nominal3 unique values
0 missing
nateglinidenominal3 unique values
0 missing
repaglinidenominal4 unique values
0 missing
chlorpropamidenominal2 unique values
0 missing
glimepiridenominal4 unique values
0 missing
acetohexamidenominal1 unique values
0 missing
glipizidenominal4 unique values
0 missing
glyburidenominal4 unique values
0 missing
tolbutamidenominal1 unique values
0 missing
pioglitazonenominal3 unique values
0 missing
rosiglitazonenominal4 unique values
0 missing
acarbosenominal2 unique values
0 missing
miglitolnominal1 unique values
0 missing
troglitazonenominal1 unique values
0 missing
tolazamidenominal2 unique values
0 missing
examidenominal1 unique values
0 missing
citogliptonnominal1 unique values
0 missing
insulinnominal4 unique values
0 missing
glyburide.metforminnominal2 unique values
0 missing
glipizide.metforminnominal1 unique values
0 missing
glimepiride.pioglitazonenominal2 unique values
0 missing
metformin.rosiglitazonenominal1 unique values
0 missing
metformin.pioglitazonenominal1 unique values
0 missing
changenominal2 unique values
0 missing
diabetesMednominal2 unique values
0 missing
num_proceduresnumeric7 unique values
0 missing
patient_nbrnumeric1972 unique values
0 missing
racenominal5 unique values
55 missing
gendernominal2 unique values
0 missing
agenominal10 unique values
0 missing
weightnominal5 unique values
1928 missing
admission_type_idnumeric7 unique values
0 missing
discharge_disposition_idnumeric18 unique values
0 missing
admission_source_idnumeric10 unique values
0 missing
time_in_hospitalnumeric14 unique values
0 missing
payer_codenominal15 unique values
784 missing
medical_specialtynominal35 unique values
1000 missing
num_lab_proceduresnumeric96 unique values
0 missing
encounter_idnumeric2000 unique values
0 missing
num_medicationsnumeric54 unique values
0 missing
number_outpatientnumeric17 unique values
0 missing
number_emergencynumeric12 unique values
0 missing
number_inpatientnumeric12 unique values
0 missing
diag_1nominal279 unique values
0 missing
diag_2nominal252 unique values
11 missing
diag_3nominal269 unique values
36 missing
number_diagnosesnumeric13 unique values
0 missing
max_glu_serumnominal4 unique values
0 missing
A1Cresultnominal4 unique values
0 missing
metforminnominal4 unique values
0 missing

19 properties

2000
Number of instances (rows) of the dataset.
50
Number of attributes (columns) of the dataset.
3
Number of distinct values of the target attribute (if it is nominal).
3814
Number of missing values in the dataset.
1977
Number of instances with at least one value missing.
13
Number of numeric attributes.
37
Number of nominal attributes.
74
Percentage of nominal attributes.
0.42
Average class difference between consecutive instances.
26
Percentage of numeric attributes.
3.81
Percentage of missing values.
98.85
Percentage of instances having missing values.
18
Percentage of binary attributes.
9
Number of binary attributes.
223
Number of instances belonging to the least frequent class.
11.15
Percentage of instances belonging to the least frequent class.
1078
Number of instances belonging to the most frequent class.
53.9
Percentage of instances belonging to the most frequent class.
0.03
Number of attributes divided by the number of instances.

0 tasks

Define a new task