DEVELOPMENT... OpenML
Data
vehicle_seed_0_nrows_2000_nclasses_10_ncols_100_stratify_True

vehicle_seed_0_nrows_2000_nclasses_10_ncols_100_stratify_True

active ARFF Publicly available Visibility: public Uploaded 17-11-2022 by David Wilson
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Subsampling of the dataset vehicle (54) with seed=0 args.nrows=2000 args.ncols=100 args.nclasses=10 args.no_stratify=True Generated with the following source code: ```python def subsample( self, seed: int, nrows_max: int = 2_000, ncols_max: int = 100, nclasses_max: int = 10, stratified: bool = True, ) -> Dataset: rng = np.random.default_rng(seed) x = self.x y = self.y # Uniformly sample classes = y.unique() if len(classes) > nclasses_max: vcs = y.value_counts() selected_classes = rng.choice( classes, size=nclasses_max, replace=False, p=vcs / sum(vcs), ) # Select the indices where one of these classes is present idxs = y.index[y.isin(classes)] x = x.iloc[idxs] y = y.iloc[idxs] # Uniformly sample columns if required if len(x.columns) > ncols_max: columns_idxs = rng.choice( list(range(len(x.columns))), size=ncols_max, replace=False ) sorted_column_idxs = sorted(columns_idxs) selected_columns = list(x.columns[sorted_column_idxs]) x = x[selected_columns] else: sorted_column_idxs = list(range(len(x.columns))) if len(x) > nrows_max: # Stratify accordingly target_name = y.name data = pd.concat((x, y), axis="columns") _, subset = train_test_split( data, test_size=nrows_max, stratify=data[target_name], shuffle=True, random_state=seed, ) x = subset.drop(target_name, axis="columns") y = subset[target_name] # We need to convert categorical columns to string for openml categorical_mask = [self.categorical_mask[i] for i in sorted_column_idxs] columns = list(x.columns) return Dataset( # Technically this is not the same but it's where it was derived from dataset=self.dataset, x=x, y=y, categorical_mask=categorical_mask, columns=columns, ) ```

19 features

Class (target)nominal4 unique values
0 missing
MAX.LENGTH_RECTANGULARITYnumeric66 unique values
0 missing
HOLLOWS_RATIOnumeric31 unique values
0 missing
KURTOSIS_ABOUT_MINORnumeric30 unique values
0 missing
KURTOSIS_ABOUT_MAJORnumeric41 unique values
0 missing
SKEWNESS_ABOUT_MINORnumeric23 unique values
0 missing
SKEWNESS_ABOUT_MAJORnumeric39 unique values
0 missing
SCALED_RADIUS_OF_GYRATIONnumeric143 unique values
0 missing
SCALED_VARIANCE_MINORnumeric424 unique values
0 missing
SCALED_VARIANCE_MAJORnumeric128 unique values
0 missing
COMPACTNESSnumeric44 unique values
0 missing
PR.AXIS_RECTANGULARITYnumeric13 unique values
0 missing
ELONGATEDNESSnumeric35 unique values
0 missing
SCATTER_RATIOnumeric131 unique values
0 missing
MAX.LENGTH_ASPECT_RATIOnumeric21 unique values
0 missing
PR.AXIS_ASPECT_RATIOnumeric37 unique values
0 missing
RADIUS_RATIOnumeric134 unique values
0 missing
DISTANCE_CIRCULARITYnumeric63 unique values
0 missing
CIRCULARITYnumeric27 unique values
0 missing

19 properties

846
Number of instances (rows) of the dataset.
19
Number of attributes (columns) of the dataset.
4
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
18
Number of numeric attributes.
1
Number of nominal attributes.
5.26
Percentage of nominal attributes.
0.26
Average class difference between consecutive instances.
94.74
Percentage of numeric attributes.
0
Percentage of missing values.
0
Percentage of instances having missing values.
0
Percentage of binary attributes.
0
Number of binary attributes.
199
Number of instances belonging to the least frequent class.
23.52
Percentage of instances belonging to the least frequent class.
218
Number of instances belonging to the most frequent class.
25.77
Percentage of instances belonging to the most frequent class.
0.02
Number of attributes divided by the number of instances.

0 tasks

Define a new task