DEVELOPMENT... OpenML
Data
Australian_seed_3_nrows_2000_nclasses_10_ncols_100_stratify_True

Australian_seed_3_nrows_2000_nclasses_10_ncols_100_stratify_True

active ARFF Publicly available Visibility: public Uploaded 17-11-2022 by David Wilson
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Subsampling of the dataset Australian (40981) with seed=3 args.nrows=2000 args.ncols=100 args.nclasses=10 args.no_stratify=True Generated with the following source code: ```python def subsample( self, seed: int, nrows_max: int = 2_000, ncols_max: int = 100, nclasses_max: int = 10, stratified: bool = True, ) -> Dataset: rng = np.random.default_rng(seed) x = self.x y = self.y # Uniformly sample classes = y.unique() if len(classes) > nclasses_max: vcs = y.value_counts() selected_classes = rng.choice( classes, size=nclasses_max, replace=False, p=vcs / sum(vcs), ) # Select the indices where one of these classes is present idxs = y.index[y.isin(classes)] x = x.iloc[idxs] y = y.iloc[idxs] # Uniformly sample columns if required if len(x.columns) > ncols_max: columns_idxs = rng.choice( list(range(len(x.columns))), size=ncols_max, replace=False ) sorted_column_idxs = sorted(columns_idxs) selected_columns = list(x.columns[sorted_column_idxs]) x = x[selected_columns] else: sorted_column_idxs = list(range(len(x.columns))) if len(x) > nrows_max: # Stratify accordingly target_name = y.name data = pd.concat((x, y), axis="columns") _, subset = train_test_split( data, test_size=nrows_max, stratify=data[target_name], shuffle=True, random_state=seed, ) x = subset.drop(target_name, axis="columns") y = subset[target_name] # We need to convert categorical columns to string for openml categorical_mask = [self.categorical_mask[i] for i in sorted_column_idxs] columns = list(x.columns) return Dataset( # Technically this is not the same but it's where it was derived from dataset=self.dataset, x=x, y=y, categorical_mask=categorical_mask, columns=columns, ) ```

15 features

A15 (target)nominal2 unique values
0 missing
A1nominal2 unique values
0 missing
A2numeric350 unique values
0 missing
A3numeric215 unique values
0 missing
A4nominal3 unique values
0 missing
A5nominal14 unique values
0 missing
A6nominal8 unique values
0 missing
A7numeric132 unique values
0 missing
A8nominal2 unique values
0 missing
A9nominal2 unique values
0 missing
A10numeric23 unique values
0 missing
A11nominal2 unique values
0 missing
A12nominal3 unique values
0 missing
A13numeric171 unique values
0 missing
A14numeric240 unique values
0 missing

19 properties

690
Number of instances (rows) of the dataset.
15
Number of attributes (columns) of the dataset.
2
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
6
Number of numeric attributes.
9
Number of nominal attributes.
60
Percentage of nominal attributes.
0.52
Average class difference between consecutive instances.
40
Percentage of numeric attributes.
0
Percentage of missing values.
0
Percentage of instances having missing values.
33.33
Percentage of binary attributes.
5
Number of binary attributes.
307
Number of instances belonging to the least frequent class.
44.49
Percentage of instances belonging to the least frequent class.
383
Number of instances belonging to the most frequent class.
55.51
Percentage of instances belonging to the most frequent class.
0.02
Number of attributes divided by the number of instances.

0 tasks

Define a new task