DEVELOPMENT... OpenML
Data
KDDCup09_upselling_seed_3_nrows_2000_nclasses_10_ncols_100_stratify_True

KDDCup09_upselling_seed_3_nrows_2000_nclasses_10_ncols_100_stratify_True

active ARFF Publicly available Visibility: public Uploaded 17-11-2022 by David Wilson
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Subsampling of the dataset KDDCup09_upselling (44186) with seed=3 args.nrows=2000 args.ncols=100 args.nclasses=10 args.no_stratify=True Generated with the following source code: ```python def subsample( self, seed: int, nrows_max: int = 2_000, ncols_max: int = 100, nclasses_max: int = 10, stratified: bool = True, ) -> Dataset: rng = np.random.default_rng(seed) x = self.x y = self.y # Uniformly sample classes = y.unique() if len(classes) > nclasses_max: vcs = y.value_counts() selected_classes = rng.choice( classes, size=nclasses_max, replace=False, p=vcs / sum(vcs), ) # Select the indices where one of these classes is present idxs = y.index[y.isin(classes)] x = x.iloc[idxs] y = y.iloc[idxs] # Uniformly sample columns if required if len(x.columns) > ncols_max: columns_idxs = rng.choice( list(range(len(x.columns))), size=ncols_max, replace=False ) sorted_column_idxs = sorted(columns_idxs) selected_columns = list(x.columns[sorted_column_idxs]) x = x[selected_columns] else: sorted_column_idxs = list(range(len(x.columns))) if len(x) > nrows_max: # Stratify accordingly target_name = y.name data = pd.concat((x, y), axis="columns") _, subset = train_test_split( data, test_size=nrows_max, stratify=data[target_name], shuffle=True, random_state=seed, ) x = subset.drop(target_name, axis="columns") y = subset[target_name] # We need to convert categorical columns to string for openml categorical_mask = [self.categorical_mask[i] for i in sorted_column_idxs] columns = list(x.columns) return Dataset( # Technically this is not the same but it's where it was derived from dataset=self.dataset, x=x, y=y, categorical_mask=categorical_mask, columns=columns, ) ```

50 features

UPSELLING (target)nominal2 unique values
0 missing
Var133numeric1872 unique values
0 missing
Var132numeric15 unique values
0 missing
Var134numeric1716 unique values
0 missing
Var140numeric644 unique values
0 missing
Var144numeric8 unique values
0 missing
Var149numeric1089 unique values
0 missing
Var153numeric1986 unique values
0 missing
Var160numeric125 unique values
0 missing
Var163numeric1303 unique values
0 missing
Var194nominal4 unique values
0 missing
Var196nominal3 unique values
0 missing
Var201nominal2 unique values
0 missing
Var203nominal4 unique values
0 missing
Var205nominal4 unique values
0 missing
Var207nominal11 unique values
0 missing
Var208nominal3 unique values
0 missing
Var210nominal5 unique values
0 missing
Var211nominal2 unique values
0 missing
Var218nominal3 unique values
0 missing
Var221nominal7 unique values
0 missing
Var223nominal5 unique values
0 missing
Var225nominal4 unique values
0 missing
Var227nominal7 unique values
0 missing
Var229nominal5 unique values
0 missing
Var76numeric1573 unique values
0 missing
Var13numeric681 unique values
0 missing
Var21numeric237 unique values
0 missing
Var22numeric237 unique values
0 missing
Var24numeric37 unique values
0 missing
Var25numeric96 unique values
0 missing
Var28numeric439 unique values
0 missing
Var35numeric10 unique values
0 missing
Var38numeric1546 unique values
0 missing
Var57numeric1932 unique values
0 missing
Var65numeric9 unique values
0 missing
Var73numeric109 unique values
0 missing
Var74numeric130 unique values
0 missing
Var6numeric509 unique values
0 missing
Var78numeric8 unique values
0 missing
Var81numeric2000 unique values
0 missing
Var83numeric45 unique values
0 missing
Var85numeric50 unique values
0 missing
Var109numeric70 unique values
0 missing
Var112numeric80 unique values
0 missing
Var113numeric1997 unique values
0 missing
Var119numeric471 unique values
0 missing
Var123numeric66 unique values
0 missing
Var125numeric1285 unique values
0 missing
Var126numeric51 unique values
0 missing

19 properties

2000
Number of instances (rows) of the dataset.
50
Number of attributes (columns) of the dataset.
2
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
34
Number of numeric attributes.
16
Number of nominal attributes.
32
Percentage of nominal attributes.
0.5
Average class difference between consecutive instances.
68
Percentage of numeric attributes.
0
Percentage of missing values.
0
Percentage of instances having missing values.
6
Percentage of binary attributes.
3
Number of binary attributes.
1000
Number of instances belonging to the least frequent class.
50
Percentage of instances belonging to the least frequent class.
1000
Number of instances belonging to the most frequent class.
50
Percentage of instances belonging to the most frequent class.
0.03
Number of attributes divided by the number of instances.

0 tasks

Define a new task