DEVELOPMENT... OpenML
Data
KDDCup09_upselling_seed_2_nrows_2000_nclasses_10_ncols_100_stratify_True

KDDCup09_upselling_seed_2_nrows_2000_nclasses_10_ncols_100_stratify_True

active ARFF Publicly available Visibility: public Uploaded 17-11-2022 by David Wilson
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Subsampling of the dataset KDDCup09_upselling (44186) with seed=2 args.nrows=2000 args.ncols=100 args.nclasses=10 args.no_stratify=True Generated with the following source code: ```python def subsample( self, seed: int, nrows_max: int = 2_000, ncols_max: int = 100, nclasses_max: int = 10, stratified: bool = True, ) -> Dataset: rng = np.random.default_rng(seed) x = self.x y = self.y # Uniformly sample classes = y.unique() if len(classes) > nclasses_max: vcs = y.value_counts() selected_classes = rng.choice( classes, size=nclasses_max, replace=False, p=vcs / sum(vcs), ) # Select the indices where one of these classes is present idxs = y.index[y.isin(classes)] x = x.iloc[idxs] y = y.iloc[idxs] # Uniformly sample columns if required if len(x.columns) > ncols_max: columns_idxs = rng.choice( list(range(len(x.columns))), size=ncols_max, replace=False ) sorted_column_idxs = sorted(columns_idxs) selected_columns = list(x.columns[sorted_column_idxs]) x = x[selected_columns] else: sorted_column_idxs = list(range(len(x.columns))) if len(x) > nrows_max: # Stratify accordingly target_name = y.name data = pd.concat((x, y), axis="columns") _, subset = train_test_split( data, test_size=nrows_max, stratify=data[target_name], shuffle=True, random_state=seed, ) x = subset.drop(target_name, axis="columns") y = subset[target_name] # We need to convert categorical columns to string for openml categorical_mask = [self.categorical_mask[i] for i in sorted_column_idxs] columns = list(x.columns) return Dataset( # Technically this is not the same but it's where it was derived from dataset=self.dataset, x=x, y=y, categorical_mask=categorical_mask, columns=columns, ) ```

50 features

UPSELLING (target)nominal2 unique values
0 missing
Var133numeric1854 unique values
0 missing
Var132numeric13 unique values
0 missing
Var134numeric1717 unique values
0 missing
Var140numeric649 unique values
0 missing
Var144numeric8 unique values
0 missing
Var149numeric1102 unique values
0 missing
Var153numeric1977 unique values
0 missing
Var160numeric125 unique values
0 missing
Var163numeric1299 unique values
0 missing
Var194nominal4 unique values
0 missing
Var196nominal2 unique values
0 missing
Var201nominal2 unique values
0 missing
Var203nominal4 unique values
0 missing
Var205nominal4 unique values
0 missing
Var207nominal10 unique values
0 missing
Var208nominal3 unique values
0 missing
Var210nominal5 unique values
0 missing
Var211nominal2 unique values
0 missing
Var218nominal3 unique values
0 missing
Var221nominal7 unique values
0 missing
Var223nominal5 unique values
0 missing
Var225nominal4 unique values
0 missing
Var227nominal7 unique values
0 missing
Var229nominal5 unique values
0 missing
Var76numeric1570 unique values
0 missing
Var13numeric684 unique values
0 missing
Var21numeric246 unique values
0 missing
Var22numeric246 unique values
0 missing
Var24numeric33 unique values
0 missing
Var25numeric101 unique values
0 missing
Var28numeric489 unique values
0 missing
Var35numeric9 unique values
0 missing
Var38numeric1544 unique values
0 missing
Var57numeric1944 unique values
0 missing
Var65numeric9 unique values
0 missing
Var73numeric109 unique values
0 missing
Var74numeric127 unique values
0 missing
Var6numeric507 unique values
0 missing
Var78numeric9 unique values
0 missing
Var81numeric1997 unique values
0 missing
Var83numeric42 unique values
0 missing
Var85numeric47 unique values
0 missing
Var109numeric69 unique values
0 missing
Var112numeric77 unique values
0 missing
Var113numeric1999 unique values
0 missing
Var119numeric485 unique values
0 missing
Var123numeric73 unique values
0 missing
Var125numeric1287 unique values
0 missing
Var126numeric51 unique values
0 missing

19 properties

2000
Number of instances (rows) of the dataset.
50
Number of attributes (columns) of the dataset.
2
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
34
Number of numeric attributes.
16
Number of nominal attributes.
32
Percentage of nominal attributes.
0.49
Average class difference between consecutive instances.
68
Percentage of numeric attributes.
0
Percentage of missing values.
0
Percentage of instances having missing values.
6
Percentage of binary attributes.
3
Number of binary attributes.
1000
Number of instances belonging to the least frequent class.
50
Percentage of instances belonging to the least frequent class.
1000
Number of instances belonging to the most frequent class.
50
Percentage of instances belonging to the most frequent class.
0.03
Number of attributes divided by the number of instances.

0 tasks

Define a new task