DEVELOPMENT... OpenML
Data
Higgs_seed_1_nrows_2000_nclasses_10_ncols_100_stratify_True

Higgs_seed_1_nrows_2000_nclasses_10_ncols_100_stratify_True

active ARFF Publicly available Visibility: public Uploaded 17-11-2022 by David Wilson
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Subsampling of the dataset Higgs (44129) with seed=1 args.nrows=2000 args.ncols=100 args.nclasses=10 args.no_stratify=True Generated with the following source code: ```python def subsample( self, seed: int, nrows_max: int = 2_000, ncols_max: int = 100, nclasses_max: int = 10, stratified: bool = True, ) -> Dataset: rng = np.random.default_rng(seed) x = self.x y = self.y # Uniformly sample classes = y.unique() if len(classes) > nclasses_max: vcs = y.value_counts() selected_classes = rng.choice( classes, size=nclasses_max, replace=False, p=vcs / sum(vcs), ) # Select the indices where one of these classes is present idxs = y.index[y.isin(classes)] x = x.iloc[idxs] y = y.iloc[idxs] # Uniformly sample columns if required if len(x.columns) > ncols_max: columns_idxs = rng.choice( list(range(len(x.columns))), size=ncols_max, replace=False ) sorted_column_idxs = sorted(columns_idxs) selected_columns = list(x.columns[sorted_column_idxs]) x = x[selected_columns] else: sorted_column_idxs = list(range(len(x.columns))) if len(x) > nrows_max: # Stratify accordingly target_name = y.name data = pd.concat((x, y), axis="columns") _, subset = train_test_split( data, test_size=nrows_max, stratify=data[target_name], shuffle=True, random_state=seed, ) x = subset.drop(target_name, axis="columns") y = subset[target_name] # We need to convert categorical columns to string for openml categorical_mask = [self.categorical_mask[i] for i in sorted_column_idxs] columns = list(x.columns) return Dataset( # Technically this is not the same but it's where it was derived from dataset=self.dataset, x=x, y=y, categorical_mask=categorical_mask, columns=columns, ) ```

25 features

target (target)nominal2 unique values
0 missing
jet_3_etanumeric1573 unique values
0 missing
m_wwbbnumeric1994 unique values
0 missing
m_wbbnumeric1995 unique values
0 missing
m_bbnumeric1988 unique values
0 missing
m_jlvnumeric1989 unique values
0 missing
m_lvnumeric1940 unique values
0 missing
m_jjjnumeric1987 unique values
0 missing
m_jjnumeric1996 unique values
0 missing
jet_4_phinumeric1720 unique values
0 missing
jet_4_etanumeric1617 unique values
0 missing
jet_4_ptnumeric1695 unique values
0 missing
jet_3_phinumeric1711 unique values
0 missing
lepton_pTnumeric1775 unique values
0 missing
jet_3_ptnumeric1784 unique values
0 missing
jet_2_phinumeric1717 unique values
0 missing
jet_2_etanumeric1549 unique values
0 missing
jet_2_ptnumeric1833 unique values
0 missing
jet_1_phinumeric1717 unique values
0 missing
jet_1_etanumeric1520 unique values
0 missing
jet_1_ptnumeric1854 unique values
0 missing
missing_energy_phinumeric1997 unique values
0 missing
missing_energy_magnitudenumeric1998 unique values
0 missing
lepton_phinumeric1714 unique values
0 missing
lepton_etanumeric1599 unique values
0 missing

19 properties

2000
Number of instances (rows) of the dataset.
25
Number of attributes (columns) of the dataset.
2
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
24
Number of numeric attributes.
1
Number of nominal attributes.
4
Percentage of nominal attributes.
0.48
Average class difference between consecutive instances.
96
Percentage of numeric attributes.
0
Percentage of missing values.
0
Percentage of instances having missing values.
4
Percentage of binary attributes.
1
Number of binary attributes.
1000
Number of instances belonging to the least frequent class.
50
Percentage of instances belonging to the least frequent class.
1000
Number of instances belonging to the most frequent class.
50
Percentage of instances belonging to the most frequent class.
0.01
Number of attributes divided by the number of instances.

0 tasks

Define a new task