DEVELOPMENT... OpenML
Data
pol_seed_4_nrows_2000_nclasses_10_ncols_100_stratify_True

pol_seed_4_nrows_2000_nclasses_10_ncols_100_stratify_True

active ARFF Publicly available Visibility: public Uploaded 17-11-2022 by David Wilson
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Subsampling of the dataset pol (44122) with seed=4 args.nrows=2000 args.ncols=100 args.nclasses=10 args.no_stratify=True Generated with the following source code: ```python def subsample( self, seed: int, nrows_max: int = 2_000, ncols_max: int = 100, nclasses_max: int = 10, stratified: bool = True, ) -> Dataset: rng = np.random.default_rng(seed) x = self.x y = self.y # Uniformly sample classes = y.unique() if len(classes) > nclasses_max: vcs = y.value_counts() selected_classes = rng.choice( classes, size=nclasses_max, replace=False, p=vcs / sum(vcs), ) # Select the indices where one of these classes is present idxs = y.index[y.isin(classes)] x = x.iloc[idxs] y = y.iloc[idxs] # Uniformly sample columns if required if len(x.columns) > ncols_max: columns_idxs = rng.choice( list(range(len(x.columns))), size=ncols_max, replace=False ) sorted_column_idxs = sorted(columns_idxs) selected_columns = list(x.columns[sorted_column_idxs]) x = x[selected_columns] else: sorted_column_idxs = list(range(len(x.columns))) if len(x) > nrows_max: # Stratify accordingly target_name = y.name data = pd.concat((x, y), axis="columns") _, subset = train_test_split( data, test_size=nrows_max, stratify=data[target_name], shuffle=True, random_state=seed, ) x = subset.drop(target_name, axis="columns") y = subset[target_name] # We need to convert categorical columns to string for openml categorical_mask = [self.categorical_mask[i] for i in sorted_column_idxs] columns = list(x.columns) return Dataset( # Technically this is not the same but it's where it was derived from dataset=self.dataset, x=x, y=y, categorical_mask=categorical_mask, columns=columns, ) ```

27 features

binaryClass (target)nominal2 unique values
0 missing
f21numeric64 unique values
0 missing
f33numeric20 unique values
0 missing
f32numeric26 unique values
0 missing
f31numeric27 unique values
0 missing
f30numeric27 unique values
0 missing
f29numeric33 unique values
0 missing
f28numeric41 unique values
0 missing
f27numeric40 unique values
0 missing
f26numeric37 unique values
0 missing
f25numeric48 unique values
0 missing
f24numeric46 unique values
0 missing
f23numeric58 unique values
0 missing
f22numeric66 unique values
0 missing
f5numeric158 unique values
0 missing
f20numeric63 unique values
0 missing
f19numeric78 unique values
0 missing
f18numeric92 unique values
0 missing
f17numeric89 unique values
0 missing
f16numeric82 unique values
0 missing
f15numeric84 unique values
0 missing
f14numeric82 unique values
0 missing
f13numeric63 unique values
0 missing
f9numeric50 unique values
0 missing
f8numeric75 unique values
0 missing
f7numeric85 unique values
0 missing
f6numeric97 unique values
0 missing

19 properties

2000
Number of instances (rows) of the dataset.
27
Number of attributes (columns) of the dataset.
2
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
26
Number of numeric attributes.
1
Number of nominal attributes.
3.7
Percentage of nominal attributes.
0.49
Average class difference between consecutive instances.
96.3
Percentage of numeric attributes.
0
Percentage of missing values.
0
Percentage of instances having missing values.
3.7
Percentage of binary attributes.
1
Number of binary attributes.
1000
Number of instances belonging to the least frequent class.
50
Percentage of instances belonging to the least frequent class.
1000
Number of instances belonging to the most frequent class.
50
Percentage of instances belonging to the most frequent class.
0.01
Number of attributes divided by the number of instances.

0 tasks

Define a new task