DEVELOPMENT... OpenML
Data
covertype_seed_2_nrows_2000_nclasses_10_ncols_100_stratify_True

covertype_seed_2_nrows_2000_nclasses_10_ncols_100_stratify_True

active ARFF Publicly available Visibility: public Uploaded 17-11-2022 by David Wilson
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Subsampling of the dataset covertype (44121) with seed=2 args.nrows=2000 args.ncols=100 args.nclasses=10 args.no_stratify=True Generated with the following source code: ```python def subsample( self, seed: int, nrows_max: int = 2_000, ncols_max: int = 100, nclasses_max: int = 10, stratified: bool = True, ) -> Dataset: rng = np.random.default_rng(seed) x = self.x y = self.y # Uniformly sample classes = y.unique() if len(classes) > nclasses_max: vcs = y.value_counts() selected_classes = rng.choice( classes, size=nclasses_max, replace=False, p=vcs / sum(vcs), ) # Select the indices where one of these classes is present idxs = y.index[y.isin(classes)] x = x.iloc[idxs] y = y.iloc[idxs] # Uniformly sample columns if required if len(x.columns) > ncols_max: columns_idxs = rng.choice( list(range(len(x.columns))), size=ncols_max, replace=False ) sorted_column_idxs = sorted(columns_idxs) selected_columns = list(x.columns[sorted_column_idxs]) x = x[selected_columns] else: sorted_column_idxs = list(range(len(x.columns))) if len(x) > nrows_max: # Stratify accordingly target_name = y.name data = pd.concat((x, y), axis="columns") _, subset = train_test_split( data, test_size=nrows_max, stratify=data[target_name], shuffle=True, random_state=seed, ) x = subset.drop(target_name, axis="columns") y = subset[target_name] # We need to convert categorical columns to string for openml categorical_mask = [self.categorical_mask[i] for i in sorted_column_idxs] columns = list(x.columns) return Dataset( # Technically this is not the same but it's where it was derived from dataset=self.dataset, x=x, y=y, categorical_mask=categorical_mask, columns=columns, ) ```

11 features

Y (target)nominal2 unique values
0 missing
X1numeric883 unique values
0 missing
X2numeric350 unique values
0 missing
X3numeric43 unique values
0 missing
X4numeric240 unique values
0 missing
X5numeric282 unique values
0 missing
X6numeric1417 unique values
0 missing
X7numeric133 unique values
0 missing
X8numeric107 unique values
0 missing
X9numeric208 unique values
0 missing
X10numeric1287 unique values
0 missing

19 properties

2000
Number of instances (rows) of the dataset.
11
Number of attributes (columns) of the dataset.
2
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
10
Number of numeric attributes.
1
Number of nominal attributes.
9.09
Percentage of nominal attributes.
0.5
Average class difference between consecutive instances.
90.91
Percentage of numeric attributes.
0
Percentage of missing values.
0
Percentage of instances having missing values.
9.09
Percentage of binary attributes.
1
Number of binary attributes.
1000
Number of instances belonging to the least frequent class.
50
Percentage of instances belonging to the least frequent class.
1000
Number of instances belonging to the most frequent class.
50
Percentage of instances belonging to the most frequent class.
0.01
Number of attributes divided by the number of instances.

0 tasks

Define a new task