DEVELOPMENT... OpenML
Data
Intersectional-Bias-Assessment-(Testing-Data)

Intersectional-Bias-Assessment-(Testing-Data)

active ARFF CC-4Y Visibility: public Uploaded 19-09-2022 by Robertson
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This synthetic dataset contains demographic and clinical data used to test the performance of a trained classifier in predicting a diagnosis (of schizophrenia or depression), and assess performance for intersectional bias. This dataset is used in the tutorial 'An Intersectional Approach to Model Construction and Evaluation in Mental Health Care' presented at ACM FAccT 2022.

19 features

Diagnosis (target)numeric2 unique values
0 missing
Appetitenumeric1000 unique values
0 missing
Unusual_Thoughtnumeric1000 unique values
0 missing
Tensionnumeric1000 unique values
0 missing
Passivenumeric1000 unique values
0 missing
Withdrawalnumeric1000 unique values
0 missing
Suspiciousnumeric1000 unique values
0 missing
Delusionnumeric1000 unique values
0 missing
Psychomotornumeric1000 unique values
0 missing
Concentrationnumeric1000 unique values
0 missing
Ruminationnumeric1000 unique values
0 missing
Tirednumeric1000 unique values
0 missing
Sleepnumeric1000 unique values
0 missing
Dep_Moodnumeric1000 unique values
0 missing
Anhedonianumeric1000 unique values
0 missing
Delaystring2 unique values
0 missing
Housingstring2 unique values
0 missing
Racestring4 unique values
0 missing
Sexstring2 unique values
0 missing

19 properties

1000
Number of instances (rows) of the dataset.
19
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
15
Number of numeric attributes.
0
Number of nominal attributes.
0
Percentage of nominal attributes.
0.53
Average class difference between consecutive instances.
78.95
Percentage of numeric attributes.
0
Percentage of missing values.
0
Percentage of instances having missing values.
0
Percentage of binary attributes.
0
Number of binary attributes.
Number of instances belonging to the least frequent class.
Percentage of instances belonging to the least frequent class.
Number of instances belonging to the most frequent class.
Percentage of instances belonging to the most frequent class.
0.02
Number of attributes divided by the number of instances.

0 tasks

Define a new task