DEVELOPMENT... OpenML
Data
jannis

jannis

active ARFF Publicly available Visibility: public Uploaded 16-06-2022 by Frank Wallace
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Dataset used in the tabular data benchmark https://github.com/LeoGrin/tabular-benchmark, transformed in the same way. This dataset belongs to the "classification on numerical features" benchmark. Original description: The goal of this challenge is to expose the research community to real world datasets of interest to 4Paradigm. All datasets are formatted in a uniform way, though the type of data might differ. The data are provided as preprocessed matrices, so that participants can focus on classification, although participants are welcome to use additional feature extraction procedures (as long as they do not violate any rule of the challenge). All problems are binary classification problems and are assessed with the normalized Area Under the ROC Curve (AUC) metric (i.e. 2*AUC-1). The identity of the datasets and the type of data is concealed, though its structure is revealed. The final score in phase 2 will be the average of rankings on all testing datasets, a ranking will be generated from such results, and winners will be determined according to such ranking. The tasks are constrained by a time budget. The Codalab platform provides computational resources shared by all participants. Each code submission will be exceuted in a compute worker with the following characteristics: 2Cores / 8G Memory / 40G SSD with Ubuntu OS. To ensure the fairness of the evaluation, when a code submission is evaluated, its execution time is limited in time. http://automl.chalearn.org/data

55 features

class (target)string2 unique values
0 missing
V29numeric845 unique values
0 missing
V28numeric54608 unique values
0 missing
V30numeric56873 unique values
0 missing
V31numeric55325 unique values
0 missing
V32numeric55301 unique values
0 missing
V33numeric53763 unique values
0 missing
V34numeric55308 unique values
0 missing
V35numeric56898 unique values
0 missing
V36numeric56481 unique values
0 missing
V37numeric51987 unique values
0 missing
V38numeric866 unique values
0 missing
V39numeric52030 unique values
0 missing
V40numeric55377 unique values
0 missing
V41numeric56654 unique values
0 missing
V42numeric55255 unique values
0 missing
V43numeric53813 unique values
0 missing
V44numeric52647 unique values
0 missing
V45numeric55276 unique values
0 missing
V46numeric55043 unique values
0 missing
V47numeric54146 unique values
0 missing
V48numeric54894 unique values
0 missing
V49numeric52028 unique values
0 missing
V50numeric56512 unique values
0 missing
V51numeric55504 unique values
0 missing
V52numeric53777 unique values
0 missing
V53numeric38799 unique values
0 missing
V54numeric54290 unique values
0 missing
V15numeric55330 unique values
0 missing
V2numeric841 unique values
0 missing
V3numeric864 unique values
0 missing
V4numeric54991 unique values
0 missing
V5numeric55857 unique values
0 missing
V6numeric53873 unique values
0 missing
V7numeric55093 unique values
0 missing
V8numeric54814 unique values
0 missing
V9numeric54199 unique values
0 missing
V10numeric52203 unique values
0 missing
V11numeric52571 unique values
0 missing
V12numeric54008 unique values
0 missing
V13numeric55057 unique values
0 missing
V14numeric55103 unique values
0 missing
V1numeric38700 unique values
0 missing
V16numeric56741 unique values
0 missing
V17numeric56757 unique values
0 missing
V18numeric56630 unique values
0 missing
V19numeric54597 unique values
0 missing
V20numeric56857 unique values
0 missing
V21numeric56520 unique values
0 missing
V22numeric54210 unique values
0 missing
V23numeric55698 unique values
0 missing
V24numeric55839 unique values
0 missing
V25numeric56704 unique values
0 missing
V26numeric56742 unique values
0 missing
V27numeric56528 unique values
0 missing

19 properties

57580
Number of instances (rows) of the dataset.
55
Number of attributes (columns) of the dataset.
2
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
54
Number of numeric attributes.
0
Number of nominal attributes.
0
Percentage of nominal attributes.
1
Average class difference between consecutive instances.
98.18
Percentage of numeric attributes.
0
Percentage of missing values.
0
Percentage of instances having missing values.
0
Percentage of binary attributes.
0
Number of binary attributes.
28790
Number of instances belonging to the least frequent class.
50
Percentage of instances belonging to the least frequent class.
28790
Number of instances belonging to the most frequent class.
50
Percentage of instances belonging to the most frequent class.
0
Number of attributes divided by the number of instances.

0 tasks

Define a new task