DEVELOPMENT... OpenML
Data
sarcos

sarcos

active ARFF Publicly available Visibility: public Uploaded 20-04-2022 by Shirley
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Dataset Description The data relates to an inverse dynamics problem for a seven degrees-of-freedom SARCOS anthropomorphic robot arm. The task is to map from a 21-dimensional input space (7 joint positions, 7 joint velocities, 7 joint accelerations) to the corresponding 7 joint torques. Usually, the first of those (V22) is used as the target variable and is therefore set as the default target variable, while the other 6 joint torques are excluded from the model. NOTE This dataset contains only the corresponding training data, as there is data leakage between the original training and test data. This was described in [this article](https://www.datarobot.com/blog/running-code-and-failing-models/) by Rajiv Shah. Related Studies * LWPR: An O(n) Algorithm for Incremental Real Time Learning in High Dimensional Space, S. Vijayakumar and S. Schaal, Proc ICML 2000, 1079-1086 * (2000). Statistical Learning for Humanoid Robots, S. Vijayakumar, A. D'Souza, T. Shibata, J. Conradt, S. Schaal, Autonomous Robot, 12(1) 55-69 * (2002) Incremental Online Learning in High Dimensions S. Vijayakumar, A. D'Souza, S. Schaal, Neural Computation 17(12) 2602-2634 (2005) * (2019) Cascaded Gaussian Processes for Data-efficient Robot Dynamics Learning, Sahand Rezaei-Shoshtari, David Meger, Inna Sharf, https://arxiv.org/pdf/1910.02291.pdf * (2019) TabNet: Attentive Interpretable Tabular Learning, Sercan Oe. Arik, Tomas Pfister, https://arxiv.org/pdf/1908.07442.pdf Citation LWPR: An O(n) Algorithm for Incremental Real-Time Learning in High Dimensional Space, S. Vijayakumar and S. Schaal, Proc ICML 2000, 1079-1086 (2000). The data was obtained from: http://www.gaussianprocess.org/gpml/data/

22 features

V22 (target)numeric11411 unique values
0 missing
V15numeric44440 unique values
0 missing
V28 (ignore)numeric5893 unique values
0 missing
V27 (ignore)numeric5998 unique values
0 missing
V26 (ignore)numeric5985 unique values
0 missing
V25 (ignore)numeric7907 unique values
0 missing
V24 (ignore)numeric8738 unique values
0 missing
V23 (ignore)numeric9635 unique values
0 missing
V21numeric44460 unique values
0 missing
V20numeric44332 unique values
0 missing
V19numeric44394 unique values
0 missing
V18numeric44457 unique values
0 missing
V17numeric44427 unique values
0 missing
V16numeric44364 unique values
0 missing
V1numeric34291 unique values
0 missing
V14numeric44109 unique values
0 missing
V13numeric42330 unique values
0 missing
V12numeric43172 unique values
0 missing
V11numeric44237 unique values
0 missing
V10numeric43765 unique values
0 missing
V9numeric42533 unique values
0 missing
V8numeric43877 unique values
0 missing
V7numeric2846 unique values
0 missing
V6numeric2871 unique values
0 missing
V5numeric24022 unique values
0 missing
V4numeric32846 unique values
0 missing
V3numeric25135 unique values
0 missing
V2numeric24862 unique values
0 missing

19 properties

44484
Number of instances (rows) of the dataset.
22
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
22
Number of numeric attributes.
0
Number of nominal attributes.
0
Percentage of nominal attributes.
-1.86
Average class difference between consecutive instances.
100
Percentage of numeric attributes.
0
Percentage of missing values.
0
Percentage of instances having missing values.
0
Percentage of binary attributes.
0
Number of binary attributes.
Number of instances belonging to the least frequent class.
Percentage of instances belonging to the least frequent class.
Number of instances belonging to the most frequent class.
Percentage of instances belonging to the most frequent class.
0
Number of attributes divided by the number of instances.

1 tasks

0 runs - estimation_procedure: 33% Holdout set - target_feature: V22
Define a new task