DEVELOPMENT... OpenML
Data
Online-Food-Delivery-Preferences-Bangalore-region

Online-Food-Delivery-Preferences-Bangalore-region

active ARFF CC0: Public Domain Visibility: public Uploaded 23-03-2022 by Lowe
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Context of dataset There has been a rise in the demand of online delivery in the metropolitan cities such as Bangalore in India. The question about why this increase in the demand has always been a lingering question. So a survey is conducted and the data is presented. Content The dataset has nearly 55 variables based on the following titles Demographics of consumers Overall/general purchase decision Time of delivery influencing the purchase decision Rating of Restaurant influencing the purchase decision This dataset can be useful for Classification modelling (Whether this consumer will buy again or not) Text analysis (Reviews of consumers) Geo-spatial Analysis (location-latitude and longitude of consumers) Inspiration This dataset was collected as a part of my masters thesis

55 features

Good_Road_Conditionstring5 unique values
0 missing
Unavailabilitystring5 unique values
0 missing
Unaffordablestring5 unique values
0 missing
Long_delivery_timestring5 unique values
0 missing
Delay_of_delivery_person_getting_assignedstring5 unique values
0 missing
Delay_of_delivery_person_picking_up_foodstring5 unique values
0 missing
Wrong_order_deliveredstring5 unique values
0 missing
Missing_itemstring5 unique values
0 missing
Order_placed_by_mistakestring5 unique values
0 missing
Influence_of_timestring3 unique values
0 missing
Order_Timestring3 unique values
0 missing
Maximum_wait_timestring5 unique values
0 missing
Residence_in_busy_locationstring5 unique values
0 missing
Google_Maps_Accuracystring5 unique values
0 missing
Bad_past_experiencestring5 unique values
0 missing
Low_quantity_low_timestring5 unique values
0 missing
Delivery_person_abilitystring5 unique values
0 missing
Influence_of_ratingstring3 unique values
0 missing
Less_Delivery_timestring5 unique values
0 missing
High_Quality_of_packagestring5 unique values
0 missing
Number_of_callsstring5 unique values
0 missing
Politenessstring5 unique values
0 missing
Freshness_string5 unique values
0 missing
Temperaturestring5 unique values
0 missing
Good_Taste_string5 unique values
0 missing
Good_Quantitystring5 unique values
0 missing
Outputstring2 unique values
0 missing
Reviewsstring181 unique values
0 missing
Perference(P1)string4 unique values
0 missing
Genderstring2 unique values
0 missing
Marital_Statusstring3 unique values
0 missing
Occupationstring4 unique values
0 missing
Monthly_Incomestring5 unique values
0 missing
Educational_Qualificationsstring5 unique values
0 missing
Family_sizenumeric6 unique values
0 missing
latitudenumeric77 unique values
0 missing
longitudenumeric76 unique values
0 missing
Pin_codenumeric77 unique values
0 missing
Medium_(P1)string4 unique values
0 missing
Medium_(P2)string3 unique values
0 missing
Meal(P1)string4 unique values
0 missing
Meal(P2)string3 unique values
0 missing
Agenumeric16 unique values
0 missing
Perference(P2)string4 unique values
0 missing
Ease_and_convenientstring5 unique values
0 missing
Time_savingstring5 unique values
0 missing
More_restaurant_choicesstring5 unique values
0 missing
Easy_Payment_optionstring5 unique values
0 missing
More_Offers_and_Discountstring5 unique values
0 missing
Good_Food_qualitystring5 unique values
0 missing
Good_Tracking_systemstring5 unique values
0 missing
Self_Cookingstring5 unique values
0 missing
Health_Concernstring5 unique values
0 missing
Late_Deliverystring5 unique values
0 missing
Poor_Hygienestring5 unique values
0 missing

19 properties

388
Number of instances (rows) of the dataset.
55
Number of attributes (columns) of the dataset.
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
5
Number of numeric attributes.
0
Number of nominal attributes.
0
Percentage of nominal attributes.
Average class difference between consecutive instances.
9.09
Percentage of numeric attributes.
0
Percentage of missing values.
0
Percentage of instances having missing values.
0
Percentage of binary attributes.
0
Number of binary attributes.
Number of instances belonging to the least frequent class.
Percentage of instances belonging to the least frequent class.
Number of instances belonging to the most frequent class.
Percentage of instances belonging to the most frequent class.
0.14
Number of attributes divided by the number of instances.

0 tasks

Define a new task